• Title/Summary/Keyword: support vector regression machine

Search Result 386, Processing Time 0.027 seconds

A Comparative Study on the Accuracy of Important Statistical Prediction Techniques for Marketing Data (마케팅 데이터를 대상으로 중요 통계 예측 기법의 정확성에 대한 비교 연구)

  • Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.775-780
    • /
    • 2019
  • Techniques for predicting the future can be categorized into statistics-based and deep-run-based techniques. Among them, statistic-based techniques are widely used because simple and highly accurate. However, working-level officials have difficulty using many analytical techniques correctly. In this study, we compared the accuracy of prediction by applying multinomial logistic regression, decision tree, random forest, support vector machine, and Bayesian inference to marketing related data. The same marketing data was used, and analysis was conducted by using R. The prediction results of various techniques reflecting the data characteristics of the marketing field will be a good reference for practitioners.

A Strategy of Assessing Climate Factors' Influence for Agriculture Output

  • Kuan, Chin-Hung;Leu, Yungho;Lee, Chien-Pang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1414-1430
    • /
    • 2022
  • Due to the Internet of Things popularity, many agricultural data are collected by sensors automatically. The abundance of agricultural data makes precise prediction of rice yield possible. Because the climate factors have an essential effect on the rice yield, we considered the climate factors in the prediction model. Accordingly, this paper proposes a machine learning model for rice yield prediction in Taiwan, including the genetic algorithm and support vector regression model. The dataset of this study includes the meteorological data from the Central Weather Bureau and rice yield of Taiwan from 2003 to 2019. The experimental results show the performance of the proposed model is nearly 30% better than MARS, RF, ANN, and SVR models. The most important climate factors affecting the rice yield are the total sunshine hours, the number of rainfall days, and the temperature.The proposed model also offers three advantages: (a) the proposed model can be used in different geographical regions with high prediction accuracies; (b) the proposed model has a high explanatory ability because it could select the important climate factors which affect rice yield; (c) the proposed model is more suitable for predicting rice yield because it provides higher reliability and stability for predicting. The proposed model can assist the government in making sustainable agricultural policies.

Evaluation and Predicting PM10 Concentration Using Multiple Linear Regression and Machine Learning (다중선형회귀와 기계학습 모델을 이용한 PM10 농도 예측 및 평가)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1711-1720
    • /
    • 2020
  • Particulate matter (PM) that has been artificially generated during the recent of rapid industrialization and urbanization moves and disperses according to weather conditions, and adversely affects the human skin and respiratory systems. The purpose of this study is to predict the PM10 concentration in Seoul using meteorological factors as input dataset for multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) models, and compared and evaluated the performance of the models. First, the PM10 concentration data obtained at 39 air quality monitoring sites (AQMS) in Seoul were divided into training and validation dataset (8:2 ratio). The nine meteorological factors (mean, maximum, and minimum temperature, precipitation, average and maximum wind speed, wind direction, yellow dust, and relative humidity), obtained by the automatic weather system (AWS), were composed to input dataset of models. The coefficients of determination (R2) between the observed PM10 concentration and that predicted by the MLR, SVM, and RF models was 0.260, 0.772, and 0.793, respectively, and the RF model best predicted the PM10 concentration. Among the AQMS used for model validation, Gwanak-gu and Gangnam-daero AQMS are relatively close to AWS, and the SVM and RF models were highly accurate according to the model validations. The Jongno-gu AQMS is relatively far from the AWS, but since PM10 concentration for the two adjacent AQMS were used for model training, both models presented high accuracy. By contrast, Yongsan-gu AQMS was relatively far from AQMS and AWS, both models performed poorly.

Prediction of Delivery Quality Assurance Via Machine Learning in Helical Tomotherapy (방사선치료 시 다양한 기계학습을 이용한 선량품질관리 결과의 예측)

  • Kyung Hwan Chang
    • Journal of radiological science and technology
    • /
    • v.47 no.4
    • /
    • pp.263-270
    • /
    • 2024
  • The objective of this study was to evaluate the accuracy and impact of leaf open time (LOT) and pitch using various machine learning models on EBT film-based delivery quality assurance (DQA) performed on 211 patients of helical tomotherapy (HT). We randomly selected passed (n=191) and failed (n=20) DQA measurements to evaluate the accuracy of the k-nearest neighbor (KNN), support vector machine (SVM), naive Bayes (NB) and logistic regression (LR) models using scale-dependent metrics such as the coefficient of determination (R2), mean squared error (MSE), and root MSE (RMSE). We evaluated the performance of the four prediction models in terms of the accuracy, precision, sensitivity, and F1-score using a confusion matrix, finding the NB and LR models to achieve optimal results. The results of this study are expected to reduce the workload of medical physicists and dosimetrists by predicting DQA results according to LOT and pitch in advance.

Mesh Stiffness Prediction Models for Aircraft Power Train Systems Using Machine Learning Ensemble (머신러닝 앙상블을 사용한 항공기 동력 전달 체계의 물림 강성 예측 모델)

  • Yeonjoon Kang;Yeonhi Kim;Jungsun Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.5
    • /
    • pp.1-14
    • /
    • 2024
  • This paper aimed to develop mesh stiffness prediction models using spur gear design parameters as input variables through a machine learning ensemble method. A dataset was generated by calculating individual stiffness using a calculation method presented in previous studies and deriving the minimum and maximum values of total mesh stiffness. Using multivariate linear regression, support vector regression, and decision tree regression, models were created to predict the minimum and maximum values of mesh stiffness. The stacking ensemble method was used to create meta models. Prediction models of three algorithms were used as base models. These Ensemble meta models were verified with specifications of gears used in actual aircraft engine starters, showing very high prediction performances. Thus, feasibility of applying Ensemble meta models to an actual gear system and their effectiveness were confirmed.

Prediction of Local Scour around Bridge Piers using Support Vector Machines (Support Vector Machines를 이용한 교각주위 국부세굴 예측)

  • Choi, Seongwook;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.57-61
    • /
    • 2016
  • 교각 주위에서의 국부세굴은 교각을 지나는 유체의 복잡한 흐름에 의해 발생한다. 이를 해석하기 위하여 많은 난류모형을 이용한 실내실험 및 수치실험을 수행하였으나 발생하는 와류를 하천 규모에서 전부 계산하기는 매우 어려운 문제다. 따라서 국부세굴 관련으로 최대 관심사인 최대 세굴심은 인공지능 기술에 근거한 다양한 기법을 적용해 계산하여 예측하기도 한다. 본 연구에서는 기계학습 분야 중 하나인 서포트 벡터 머신 (Support Vector Machines)을 이용하여 교각주위 국부세굴을 예측하였다. SVM은 본래 초평면을 이용하여 데이터를 분류시키는 기법이나 Vapnik(1995)이 제안한 ${\varepsilon}$ 서포트 벡터 회귀 (${\varepsilon}$-support vector regression)방법을 통해 회귀분석에도 활용할 수 있게 되었다. 학습을 위해 Charbert and Engeldinger (1956), Shen et al. (1969), Jain and Fischer (1979), 그리고 Dey et al. (1995)의 실험 자료를 이용하였고 검증을 위해 Yanmaz and Altinbilek (1991)의 실험 자료를 이용하였다. 커널함수로는 다항식 함수와 방사 기저 함수를 이용하였고 각 계수는 적합한 값을 찾기 위해 시행착오법을 사용하였다. 민감도 분석을 통해 각 계수들 중 ${\varepsilon}$의 변화가 결과에 가장 민감하게 변화를 일으키는 것을 확인하였고 검증 결과 SVM가 충분히 국부세굴을 잘 예측하는 것을 확인하였다.

  • PDF

An Optimized Combination of π-fuzzy Logic and Support Vector Machine for Stock Market Prediction (주식 시장 예측을 위한 π-퍼지 논리와 SVM의 최적 결합)

  • Dao, Tuanhung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.43-58
    • /
    • 2014
  • As the use of trading systems has increased rapidly, many researchers have become interested in developing effective stock market prediction models using artificial intelligence techniques. Stock market prediction involves multifaceted interactions between market-controlling factors and unknown random processes. A successful stock prediction model achieves the most accurate result from minimum input data with the least complex model. In this research, we develop a combination model of ${\pi}$-fuzzy logic and support vector machine (SVM) models, using a genetic algorithm to optimize the parameters of the SVM and ${\pi}$-fuzzy functions, as well as feature subset selection to improve the performance of stock market prediction. To evaluate the performance of our proposed model, we compare the performance of our model to other comparative models, including the logistic regression, multiple discriminant analysis, classification and regression tree, artificial neural network, SVM, and fuzzy SVM models, with the same data. The results show that our model outperforms all other comparative models in prediction accuracy as well as return on investment.

Development of suspended solid concentration measurement technique based on multi-spectral satellite imagery in Nakdong River using machine learning model (기계학습모형을 이용한 다분광 위성 영상 기반 낙동강 부유 물질 농도 계측 기법 개발)

  • Kwon, Siyoon;Seo, Il Won;Beak, Donghae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.121-133
    • /
    • 2021
  • Suspended Solids (SS) generated in rivers are mainly introduced from non-point pollutants or appear naturally in the water body, and are an important water quality factor that may cause long-term water pollution by being deposited. However, the conventional method of measuring the concentration of suspended solids is labor-intensive, and it is difficult to obtain a vast amount of data via point measurement. Therefore, in this study, a model for measuring the concentration of suspended solids based on remote sensing in the Nakdong River was developed using Sentinel-2 data that provides high-resolution multi-spectral satellite images. The proposed model considers the spectral bands and band ratios of various wavelength bands using a machine learning model, Support Vector Regression (SVR), to overcome the limitation of the existing remote sensing-based regression equations. The optimal combination of variables was derived using the Recursive Feature Elimination (RFE) and weight coefficients for each variable of SVR. The results show that the 705nm band belonging to the red-edge wavelength band was estimated as the most important spectral band, and the proposed SVR model produced the most accurate measurement compared with the previous regression equations. By using the RFE, the SVR model developed in this study reduces the variable dependence compared to the existing regression equations based on the single spectral band or band ratio and provides more accurate prediction of spatial distribution of suspended solids concentration.

Prediction of Residual Resistance Coefficient of Low-Speed Full Ships Using Hull Form Variables and Machine Learning Approaches (선형변수 기계학습 기법을 활용한 저속비대선의 잉여저항계수 추정)

  • Kim, Yoo-Chul;Yang, Kyung-Kyu;Kim, Myung-Soo;Lee, Young-Yeon;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.312-321
    • /
    • 2020
  • In this study, machine learning techniques were applied to predict the residual resistance coefficient (Cr) of low-speed full ships. The used machine learning methods are Ridge regression, support vector regression, random forest, neural network and their ensemble model. 19 hull form variables were used as input variables for machine learning methods. The hull form variables and Cr data obtained from 139 hull forms of KRISO database were used in analysis. 80 % of the total data were used as training models and the rest as validation. Some non-linear models showed the overfitted results and the ensemble model showed better results than others.

Analysis of Dimensionality Reduction Methods Through Epileptic EEG Feature Selection for Machine Learning in BCI (BCI에서 기계 학습을 위한 간질 뇌파 특징 선택을 통한 차원 감소 방법 분석)

  • Tong, Yang;Aliyu, Ibrahim;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1333-1342
    • /
    • 2018
  • Until now, Electroencephalography(: EEG) has been the most important and convenient method for the diagnosis and treatment of epilepsy. However, it is difficult to identify the wave characteristics of an epileptic EEG signals because it is very weak, non-stationary and has strong background noise. In this paper, we analyse the effect of dimensionality reduction methods on Epileptic EEG feature selection and classification. Three dimensionality reduction methods: Pincipal Component Analysis(: PCA), Kernel Principal Component Analysis(: KPCA) and Linear Discriminant Analysis(: LDA) were investigated. The performance of each method was evaluated by using Support Vector Machine SVM, Logistic Regression(: LR), K-Nearestneighbor(: K-NN), Decision Tree(: DR) and Random Forest(: RF). From the experimental result, PCA recorded 75% of highest accuracy in SVM, LR and K-NN. KPCA recorded 85% of best performance in SVM and K-KNN while LDA achieved 100% accuracy in K-NN. Thus, LDA dimensionality reduction is found to provide the best classification result for epileptic EEG signal.