• Title/Summary/Keyword: support stiffness

검색결과 438건 처리시간 0.027초

교반기용 임펠러가 달린 축의 베어링 지지점에 따른 진동특성 (Vibration Characteristics of Impeller Shaft for Mixing Machine According to the Positions of a Bearing Support)

  • 홍도관;안찬우;백황순;최석창;박일수
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.68-73
    • /
    • 2009
  • This paper deals with the dynamic characteristics of the impeller shaft model which is the most important part in developing the resin mixing machine. The can is rotating by air motor in mixing machine. Then the end of shaft is fixed. The bearing support is to increase the fundamental natural frequency. The natural frequency analysis using finite element analysis software are performed on the imported commercial impeller shaft model. This paper presents calculated bearing stiffness of Soda, Harris and modified Harris formula considering contact angle according to bearing supported position. The most important fundamental natural frequency of the impeller shaft except bearing support is around 13.932 Hz. This paper presents one bearing and two bearings support position to maximize the 1st natural frequency. The maximized fundamental natural frequency is around 48.843 Hz in one bearing support and 55.52 Hz in two bearings support.

  • PDF

유연성 평발인 남성의 보행 시 족궁지지대의 강도가 보행특성에 미치는 영향 - 발목관절을 중심으로 - (Investigate the Effect of Arch Support Stiffness on Gait Characteristics in Men with Flexible Flat Feet - A Focus on the Ankle Joint -)

  • Park, Subin;O'Sullivan, David Michael;Lee, Jungho
    • 한국운동역학회지
    • /
    • 제32권2호
    • /
    • pp.37-42
    • /
    • 2022
  • Objective: The aim of this study is to analyze the effect of the strength of the ankle support on the walking characteristics and ankle joints when men with flexible flat feet walk. Method: 13 adult male subjects (age: 23.9 ± 2.4 yrs, height: 173.0 ± 5.0 cm, weight: 76.9 ± 13.2 kg, Navicular Drop Test (NDT): 10.2 ± 0.8 mm) participated in this study. Each participant had to walk with the 3 conditions, barefoot, soft arch support and hard arch support, along a walkway while their kinematics was recorded at 100 Hz. Results: Based on the results of this study, it is considered that men with flexible flat feet should use hard arch support rather than bare feet to induce normal arch shape, relieve foot damage caused by excessive ankle joint abnormalities and improve stability. Conclusion: Our results for men with flat flexibility, there was a significant difference in the value of step length when walking was performed using two arch supports with different strengths. The angle of ankle dorsiflexion was significantly increased, and the ankle eversion angle was significantly decreased.

수직증축 공동주택 하부 신설 보강말뚝의 축강성 산정 (Estimation of the Axial Stiffness of Reinforcing Piles in Vertical Extension Structures)

  • 김도현;정상섬;조현철
    • 한국지반공학회논문집
    • /
    • 제35권12호
    • /
    • pp.35-44
    • /
    • 2019
  • 본 연구에서는 수직증축 공동주택 하부 신설 보강말뚝의 축강성(Kvr)을 기존말뚝의 열화를 고려한 이론적인 접근과 수치해석을 통하여 산정하였다. 3차원 유한요소 수치해석을 수행하는 과정에서, 이론적인 접근과 38본의 시험 말뚝계측 결과를 통하여 제안된 열화를 고려한 기존말뚝 축강성(Kve)의 상한 값을 적용하였다. 이를 통해, 수직증축 리모델링으로 인하여 증가된 하중을 안정적으로 지지하기 위한 신설 보강말뚝의 최소 축강성을 산정하였다. 신설 보강말뚝의 축강성 제안은 선단지지 말뚝과 마찰말뚝에 대해 수행하였고, 다양한 세장비(L/D)에 따라 제안하였다. 해석기법은 기존말뚝의 설계 당시의 양호한 상태를 고려한 말뚝지지 전면기초 거동 해석과 열화가 고려된 기존말뚝의 축강성을 적용한 말뚝지지 전면기초 거동 해석을 수행하였다. 두 해석기법에 대한 검증을 수행한 결과 말뚝지지 전면기초 거동해석이 가능한 것으로 확인되었고, 이를 통하여 기존말뚝의 열화가 발생하였을 때 선단지지 신설 보강말뚝 축강성이 44 - 67% 증가되어야 수직증축 구조물의 안정성이 확보됨을 알 수 있었다.

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

군집 신경망기법을 이용한 해상풍력발전기 지지구조물의 건전성 모니터링 기법 (Health Monitoring Method for Monopile Support Structure of Offshore Wind Turbine Using Committee of Neural Networks)

  • 이종원;김상렬;김봉기;이준신
    • 한국소음진동공학회논문집
    • /
    • 제23권4호
    • /
    • pp.347-355
    • /
    • 2013
  • A damage estimation method for monopile support structure of offshore wind turbine using modal properties and committee of neural networks is presented for effective structural health monitoring. An analytical model for a monopile support structure is established, and the natural frequencies, mode shapes, and mode shape slopes for the support structure are calculated considering soil condition and added mass. The input to the neural networks consists of the modal properties and the output is composed of the stiffness indices of the support structure. Multiple neural networks are constructed and each individual network is trained independently with different initial synaptic weights. Then, the estimated stiffness indices from different neural networks are averaged. Ten damage cases are estimated using the proposed method, and the identified damage locations and severities agree reasonably well with the exact values. The accuracy of the estimation can be improved by applying the committee of neural networks which is a statistical approach averaging the damage indices in the functional space.

2 열 원주 그루브 급기 원추형 공기베어링의 해석 (Analysis of the Conical Air Bearings with two Circumferential Grooves)

  • 김성균;박상신;김우정;한동철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1993년도 제18회 학술대회 초록집
    • /
    • pp.51-56
    • /
    • 1993
  • The conical bearing can be used to support the radial and thrust load simultaneously. Two circumferential grooves with discrete hole restrictions are made on the bearing surface in order to increase stiffness. In this paper, the dynamic characteristics of this type of bearings are calculated such as stiffness and champing coefficients. As a results of theoretical analysis, it is verified that there exist the groove depth and distance between two grooves which produce the maximum stiffness at the given bearing dimensions.

  • PDF

2열 원주 그루브 급기 원추형 공기베어링의 해석 (Analysis of the Conical Air Bearings with two Circumferential Grooves)

  • 김성균;박상신;한동철
    • Tribology and Lubricants
    • /
    • 제10권1호
    • /
    • pp.56-61
    • /
    • 1994
  • The conical bearing can be used to support the radial and thrust load simultaneously. Two circumferential grooves with discrete hole restrictions are made on the bearing surface in order to increase stiffness. In this paper, the dynamic characteristics of this type of bearings are calculated such as stiffness and damping coefficients. As a results of theoretical analysis, it is verified that there exist the groove depth and distance between two grooves which produce the maximum stiffness at the given bearing dimensions.

Out-of-plane buckling and bracing requirement in double-angle trusses

  • Chen, Shaofan;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • 제3권4호
    • /
    • pp.261-275
    • /
    • 2003
  • Truss members built-up with double angles back-to-back have monosymmetric cross-section and twisting always accompanies flexion upon the onset of buckling about the axis of symmetry. Approximate formulae for calculating the buckling capacity are presented in this paper for routine design purpose. For a member susceptible only to flexural buckling, its optimal cross-section should consist of slender plate elements so as to get larger radius of gyration. But, occurrence of twisting changes the situation owing to the weakness of thin plates in resisting torsion. Criteria for limiting the leg slenderness are discussed herein. Truss web members in compression are usually considered as hinged at both ends for out-of-plane buckling. In case one (or both) end of member is not supported laterally by bracing member, its adjoining members have to provide an elastic support of adequate stiffness in order not to underdesign the member. The stiffness provided by either compression or tension chords in different cases is analyzed, and the effect of initial crookedness of compression chord is taken into account. Formulae are presented to compute the required stiffness of chord member and to determine the effective length factor for inadequately constrained compressive diagonals.

비내진상세를 가지는 기존 저층 철근콘크리트 골조의 내진거동평가 (Seismic Performance Evaluation of Existing Low-rise RC Frames with Non-seismic Detail)

  • 김경민;이상호;오상훈
    • 한국지진공학회논문집
    • /
    • 제17권3호
    • /
    • pp.97-105
    • /
    • 2013
  • In this paper, the a static experiment of on two reinforced concrete (RC) frame sub-assemblages was conducted to evaluate the seismic behaviors of existing RC frames that were not designed to support a seismic load. The specimens were a one span and actual-sized. One of them had two columns with the same stiffness, but the other had two columns with different stiffness values. As Regarding the test results, lots of many cracks occurred on the surfaces of the columns and beam-column joints for the two specimens, but the cover concrete splitting hardly occurred was minimal until the test ends. In the case of the specimen with the same stiffness offor the two columns, the flexural collapse of the left-side column occurred. However, in the case of the specimen with different stiffness values for of the two columns, the beam-column joint finally collapsed, even though the shear strength of the joint was designed to be strong enough to support the lateral collapse load. The nonlinear Nonlinear static analysis of the two specimens was also conducted using the uniaxial spring model, and the analytical results successfully simulated the nonlinear behaviour of the specimens in accordance with the test results.

Design formulas for vibration control of taut cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie.F. Jr.;Ko, Jan-Ming;Fang, Yi
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.521-536
    • /
    • 2019
  • Using magnetorheological (MR) dampers in multiswitch open-loop control mode has been shown to be cost-effective for cable vibration mitigation. In this paper, a method for analyzing the damping performance of taut cables incorporating MR dampers in open-loop control mode is developed considering the effects of damping coefficient, damper stiffness, damper mass, and stiffness of the damper support. Making use of a three-element model of MR dampers and complex modal analysis, both numerical and asymptotic solutions are obtained. An analytical expression is obtained from the asymptotic solution to evaluate the equivalent damping ratio of the cable-damper system in the open-loop control mode. The individual and combined effects of the damping coefficient, damper stiffness, damper mass and stiffness of damper support on vibration control effectiveness are investigated in detail. The main thrust of the present study is to derive a general formula explicitly relating the normalized system damping ratio and the normalized damper parameters in consideration of all concerned effects, which can be easily used for the design of MR dampers to achieve optimal open-loop vibration control of taut cables.