• Title/Summary/Keyword: support optimization

Search Result 765, Processing Time 0.033 seconds

Optimizing SVM Ensembles Using Genetic Algorithms in Bankruptcy Prediction

  • Kim, Myoung-Jong;Kim, Hong-Bae;Kang, Dae-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.370-376
    • /
    • 2010
  • Ensemble learning is a method for improving the performance of classification and prediction algorithms. However, its performance can be degraded due to multicollinearity problem where multiple classifiers of an ensemble are highly correlated with. This paper proposes genetic algorithm-based optimization techniques of SVM ensemble to solve multicollinearity problem. Empirical results with bankruptcy prediction on Korea firms indicate that the proposed optimization techniques can improve the performance of SVM ensemble.

Optimization Algorithms for Site Facility Layout Problems Using Self-Organizing Maps

  • Park, U-Yeol;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.664-673
    • /
    • 2012
  • Determining the layout of temporary facilities that support construction activities at a site is an important planning activity, as layout can significantly affect cost, quality of work, safety, and other aspects of the project. The construction site layout problem involves difficult combinatorial optimization. Recently, various artificial intelligence(AI)-based algorithms have been applied to solving many complex optimization problems, including neural networks(NN), genetic algorithms(GA), and swarm intelligence(SI) which relates to the collective behavior of social systems such as honey bees and birds. This study proposes a site facility layout optimization algorithm based on self-organizing maps(SOM). Computational experiments are carried out to justify the efficiency of the proposed method and compare it with particle swarm optimization(PSO). The results show that the proposed algorithm can be efficiently employed to solve the problem of site layout.

Compiler Optimization Techniques for The Next Generation Low Power Multibank Memory (차세대 저전력 멀티뱅크 메모리를 위한 컴파일러 최적화 기법)

  • Cho, Doosan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.141-145
    • /
    • 2021
  • Various types of memory architectures have been developed, and various compiler optimization techniques have been studied to efficiently use them. In particular, since a memory is a major component that determines performance in mobile computing devices, various optimization techniques have been developed to support them. Recently, a lot of research on hybrid type memory architecture is being conducted, so various compiler techniques are being studied to support it. Existing compiler optimization techniques can be used to achieve the required minimum performance and constraint on low power according to market requirements. References for determining the low-power effect and the degree of performance improvement using these optimization techniques are not properly provided yet. This study was conducted to provide the experimental results of the existing compiler technique as a reference for the development of multibank memory architecture.

Design of SVM-Based Gas Classifier with Self-Learning Capability (자가학습 가능한 SVM 기반 가스 분류기의 설계)

  • Jeong, Woojae;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1400-1407
    • /
    • 2019
  • In this paper, we propose a support vector machine (SVM) based gas classifier that can support real-time self-learning. The modified sequential minimal optimization (MSMO) algorithm is employed to train the proposed SVM. By using a shared structure for learning and classification, the proposed SVM reduced the hardware area by 35% compared to the existing architecture. Our system was implemented with 3,337 CLB (configurable logic block) LUTs (look-up table) with Xilinx Zynq UltraScale+ FPGA (field programmable gate array) and verified that it can operate at the clock frequency of 108MHz.

Design of Robust Support Vector Machine Using Genetic Algorithm (유전자 알고리즘을 이용한 강인한 Support vector machine 설계)

  • Lee, Hee-Sung;Hong, Sung-Jun;Lee, Byung-Yun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.375-379
    • /
    • 2010
  • The support vector machine (SVM) has been widely used in variety pattern recognition problems applicable to recommendation systems due to its strong theoretical foundation and excellent empirical successes. However, SVM is sensitive to the presence of outliers since outlier points can have the largest margin loss and play a critical role in determining the decision hyperplane. For robust SVM, we limit the maximum value of margin loss which includes the non-convex optimization problem. Therefore, we proposed the design method of robust SVM using genetic algorithm (GA) which can solve the non-convex optimization problem. To demonstrate the performance of the proposed method, we perform experiments on various databases selected in UCI repository.

Short-Term Wind Speed Forecast Based on Least Squares Support Vector Machine

  • Wang, Yanling;Zhou, Xing;Liang, Likai;Zhang, Mingjun;Zhang, Qiang;Niu, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1385-1397
    • /
    • 2018
  • There are many factors that affect the wind speed. In addition, the randomness of wind speed also leads to low prediction accuracy for wind speed. According to this situation, this paper constructs the short-time forecasting model based on the least squares support vector machines (LSSVM) to forecast the wind speed. The basis of the model used in this paper is support vector regression (SVR), which is used to calculate the regression relationships between the historical data and forecasting data of wind speed. In order to improve the forecast precision, historical data is clustered by cluster analysis so that the historical data whose changing trend is similar with the forecasting data can be filtered out. The filtered historical data is used as the training samples for SVR and the parameters would be optimized by particle swarm optimization (PSO). The forecasting model is tested by actual data and the forecast precision is more accurate than the industry standards. The results prove the feasibility and reliability of the model.

Adaptive EDCF for IEEE802.lie MAC Protocol (IEEE 802.11e MAC의 성능향상을 위한 적응형 EDCF)

  • Kim Kun su;Kim Beob jeon;Park Jung shin;Lee Jai yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1367-1374
    • /
    • 2004
  • Efforts for standardization of medium access control (MAC) protocol in IEEE802.11e have been made to support quality of service (QoS) in IEEE802.11 MAC protocol. Enhanced distributed coordination function (EDCF) of 802.11e MAC protocol is modified to support QoS for packets that have differentiated priority. However, EDCF still has e problem of throughput optimization and priority support. Therefore, we have proposed a scheme called adaptive EDCF for both supporting priority of packets and throughput optimization. We have derived the relation between the number of nodes and contention window size for throughput optimization. Based on the analytic results, we have evaluated the performance of the proposed scheme using OPNET simulations. The simulation results show that using the proposed scheme can Improve the overall throughput regardless of the number of nodes and the decrement of the throughput with increasing the number of nodes can be alleviated. Additionally, we have shown that the adaptive EDCF can support priority of packets more effectively than existing EDCF.