• Title/Summary/Keyword: support optimization

Search Result 765, Processing Time 0.032 seconds

A Study on the Target Search Logic in the ASW Decision Support System (대잠전 의사결정지원 시스템에서 표적 탐색 논리 연구)

  • Cho, Sung-Jin;Choi, Bong-Wan;Jeon, Jae-Hyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.824-830
    • /
    • 2010
  • It is not easy job to find a underwater target using sonar system in the ASW operations. Many researchers have tried to solve anti-submarine search problem aiming to maximize the probability of detection under limited searching conditions. The classical 'Search Theory' deals with search allocation problem and search path problem. In both problems, the main issue is to prioritize the searching cells in a searching area. The number of possible searching path that is combination of the consecutive searching cells increases rapidly by exponential function in the case that the number of searching cells or searchers increases. The more searching path we consider, the longer time we calculate. In this study, an effective algorithm that can maximize the probability of detection in shorter computation time is presented. We show the presented algorithm is quicker method than previous algorithms to solve search problem through the comparison of the CPU computation time.

Topology Aggregation for Hierarchical Wireless Tactical Networks

  • Pak, Woo-Guil;Choi, Young-June
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.344-358
    • /
    • 2011
  • Wireless tactical network (WTN) is the most important present-day technology enabling modern network centric warfare. It inherits many features from WMNs, since the WTN is based on existing wireless mesh networks (WMNs). However, it also has distinctive characteristics, such as hierarchical structures and tight QoS (Quality-of-Service) requirements. Little research has been conducted on hierarchical protocols to support various QoS in WMN. We require new protocols specifically optimized for WTNs. Control packets are generally required to find paths and reserve resources for QoS requirements, so data throughput is not degraded due to overhead. The fundamental solution is to adopt topology aggregation, in which a low tier node aggregates and simplifies the topology information and delivers it to a high tier node. The overhead from control packet exchange can be reduced greatly due to decreased information size. Although topology aggregation is effective for low overhead, it also causes the inaccuracy of topology information; thus, incurring low QoS support capability. Therefore, we need a new topology aggregation algorithm to achieve high accuracy. In this paper, we propose a new aggregation algorithm based on star topology. Noting the hierarchical characteristics in military and hierarchical networks, star topology aggregation can be used effectively. Our algorithm uses a limited number of bypasses to increase the exactness of the star topology aggregation. It adjusts topology parameters whenever it adds a bypass. Consequently, the result is highly accurate and has low computational complexity.

EVOLUTION OF NUCLEAR FUEL MANAGEMENT AND REACTOR OPERATIONAL AID TOOLS

  • TURINSKY PAUL J.;KELLER PAUL M.;ABDEL-KHALIK HANY S.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.79-90
    • /
    • 2005
  • In this paper are reviewed the current status of nuclear fuel management and reactor operational aid tools. In addition, we indicate deficiencies in current capabilities and what future research is judged warranted. For the nuclear fuel management review the focus is on light water reactors and the utilization of stochastic optimization methods applied to the lattice, fuel bundle, core loading pattern, and for BWRs the control rod pattern/core flow design decision making problems. Significant progress in addressing separately each of these design problems on a single cycle basis is noted; however, the outstanding challenge of addressing the integrated design problem over multiple cycles under conditions of uncertainty remains to be addressed. For the reactor operational aid tools review the focus is on core simulators, used to both process core instrumentation signals and as an operator aid to predict future core behaviors under various operational strategies. After briefly reviewing the current status of capabilities, a more in depth review of adaptive core simulation capabilities, where core simulator input data are adjusted within their known uncertainties to improved agreement between prediction and measurement, is presented. This is done in support of the belief that further development of adaptive core simulation capabilities is required to further significantly advance the utility of core simulators in support of reactor operational aid tools.

Enhancement of Condensation Heat Transfer of Anodized Aluminum by Teflon Coating and Oil-Impregnation (테플론 코팅과 오일 담지를 이용한 알루미늄 양극산화피막의 응축 열전달 향상)

  • Kang, Minjoo;Lee, Jonghoon;Cha, Soojin;Shin, Yeaji;Kim, Donghyun;Kim, Kyung-Ja;Lee, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.2
    • /
    • pp.90-95
    • /
    • 2021
  • Surface modification technique enabling the control of condensation provides various benefit in various engineering systems, such as heat transfer, desalination, power plants, and so on. In this study, lubricant oil-impregnation into Teflon-coated nanoporous anodic oxide layer of aluminum to enhance a de-wetting and mobility of water droplet on surface. Due to the surface treatment improving water-repellency, the condensation mode is changed to dropwise, thus the frequency of sliding condensed water droplet on surface is increased. For these reasons, the surface of oil-impregnated Teflon-coated nanoporous anodic aluminum oxide shows significantly enhanced condensation heat transfer compared to bare aluminum surface. In addition, the porosity of anodic aluminum oxide affected the mobility of water droplet even with oil-impregnation and Teflon-coating, indicating that the optimization of porous structure of anodic oxide is required for maximizing the condensation heat transfer.

Optimization of static response of laminated composite plate using nonlinear FEM and ANOVA Taguchi method

  • Pratyush Kumar Sahu;Trupti Ranjan Mahapatra;Sanjib Jaypuria;Debadutta Mishra
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.625-639
    • /
    • 2023
  • In this paper, a Taguchi-based finite element method (FEM) has been proposed and implemented to assess optimal design parameters for minimum static deflection in laminated composite plate. An orthodox mathematical model (based on higher-order shear deformation plate theory and Green-Lagrange geometrical nonlinearity) has been used to compute the nonlinear central deflection values of laminated composite plates according to Taguchi design of experiment via a self-developed MATLAB computer code. The lay-up scheme, aspect ratio, thickness ratio and the support conditions of the laminated composite plate structure were designated as the governable design parameters. Analysis of variance (ANOVA) is used to investigate the effect of diverse control factors on the nonlinear static responses. Moreover, regression model is developed for predicting the desired responses. The ANOVA revealed that the lay-up scheme alongside the support condition plays vital role in minimizing the central deflection values of laminated composite plate under uniformly distributed load. The conformity test results of Taguchi analysis are also in good agreement with the numerical experimentation results.

On the optimum design of reinforcement systems for old masonry railway tunnels

  • Ghyasvand, Soheil;Fahimifar, Ahamd;Nejad, Fereidoon Moghadas
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.145-155
    • /
    • 2022
  • Safety is a most important parameters in underground railway transportation; Also stability of underground tunnel is very important in tunneling engineering. Design of a reliable support system requires an evaluation of both ground demand and support capacity. Iran's traditional railway tunnels are mainly supported with masonry structures or unsupported in high quality rock masses. A decrease in rock mass quality due to changes in groundwater regime creep and fatigue in rock and similar phenomena causes tunnel safety to decrease during time. The case study is an old tunnel in Iran, called "Keshvar"; it is more than 50 years old railway organization. In operating this Tunnel, until the several problems came up based on stability and leaking water. The goal of study is evaluation of the various reinforcement systems for supporting of the tunnel. The optimal selection of the reinforcement system is examined using TOPSIS Fuzzy method in light of the looming and available uncertainties. Several factors such as; the tunnel span, maintenance, drainage, sealing, ventilation, cost and safety were based to choose the method and system of designing. Therefore, by identifying these parameters, an optimal reinforcement system was selected and introduced. Based on optimization system for analysis, it is revealed that the systematic rock bolts and shotcrete protection had a most appropriate result for these kind of tunnel in Iran.

Efficient Implementation of SVM-Based Speech/Music Classification on Embedded Systems (SVM 기반 음성/음악 분류기의 효율적인 임베디드 시스템 구현)

  • Lim, Chung-Soo;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.461-467
    • /
    • 2011
  • Accurate classification of input signals is the key prerequisite for variable bit-rate coding, which has been introduced in order to effectively utilize limited communication bandwidth. Especially, recent surge of multimedia services elevate the importance of speech/music classification. Among many speech/music classifier, the ones based on support vector machine (SVM) have a strong selling point, high classification accuracy, but their computational complexity and memory requirement hinder their way into actual implementations. Therefore, techniques that reduce the computational complexity and the memory requirement is inevitable, particularly for embedded systems. We first analyze implementation of an SVM-based classifier on embedded systems in terms of execution time and energy consumption, and then propose two techniques that alleviate the implementation requirements: One is a technique that removes support vectors that have insignificant contribution to the final classification, and the other is to skip processing some of input signals by virtue of strong correlations in speech/music frames. These are post-processing techniques that can work with any other optimization techniques applied during the training phase of SVM. With experiments, we validate the proposed algorithms from the perspectives of classification accuracy, execution time, and energy consumption.

Orientation-based Adaptive Prediction for Effective Lossless Image Compression (효과적인 무손실 영상압축을 위한 방향성 기반 적응적 예측 방법)

  • Kim, Jongho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2409-2416
    • /
    • 2015
  • This paper presents an orientation-based adaptive prediction method for effective lossless image compression. For a robust prediction, the proposed method estimates the directional information and the property near the current pixel in a support region-based fashion, not a pixel-based one which is sensitive to a small variation. We improve the prediction performance effectively by selection of the prediction pixel adaptively according to the similarity between support regions of the current pixel and the neighboring pixels. Comprehensive experiments demonstrate that the proposed scheme achieves excellent prediction performance measured in entropy of the prediction error compared to a number of conventional prediction methods such as MED, GAP, and EDP. Moreover the complexity of the proposed algorithm measured by average execution time is low compared to MED which is the simplest prediction method.

IPv6 Handover Performance for Mobile IPTV over Mobile WiMAX Networks (모바일 WIMAX 네트워크 기반의 모바일 IPTV를 위한 IPv6 핸드오버 성능)

  • Trung, Bui Minh;Chowdhury, Mostafa Zaman;Nguyen, Tuan;Jang, Yeong-Min;Kim, Young-Il;Ryu, Won
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.51-59
    • /
    • 2011
  • To support seamless IPTV services in IP-based wireless network, delay or interruption time must be minimized because noticeable interruption will make IPTV service users unhappy. A number of protocols have been proposed for solving mobility problem. However effective seamless handover mechanism to support mobile IPTV services yet to be solved. Mobile WiMAX offers a wireless solution in the access networks that can support IPTV services. Goal of this paper is to identify some reasons of delay time during handover process in an IPv6 capable Mobile WiMAX and to perform handover delay of some optimization scenarios given by existing standardization and proposed improvement.

Intercropping in Rubber Plantation Ontology for a Decision Support System

  • Phoksawat, Kornkanok;Mahmuddin, Massudi;Ta'a, Azman
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Planting intercropping in rubber plantations is another alternative for generating more income for farmers. However, farmers still lack the knowledge of choosing plants. In addition, information for decision making comes from many sources and is knowledge accumulated by the expert. Therefore, this research aims to create a decision support system for growing rubber trees for individual farmers. It aims to get the highest income and the lowest cost by using semantic web technology so that farmers can access knowledge at all times and reduce the risk of growing crops, and also support the decision supporting system (DSS) to be more intelligent. The integrated intercropping ontology and rule are a part of the decision-making process for selecting plants that is suitable for individual rubber plots. A list of suitable plants is important for decision variables in the allocation of planting areas for each type of plant for multiple purposes. This article presents designing and developing the intercropping ontology for DSS which defines a class based on the principle of intercropping in rubber plantations. It is grouped according to the characteristics and condition of the area of the farmer as a concept of the rubber plantation. It consists of the age of rubber tree, spacing between rows of rubber trees, and water sources for use in agriculture and soil group, including slope, drainage, depth of soil, etc. The use of ontology for recommended plants suitable for individual farmers makes a contribution to the knowledge management field. Besides being useful in DSS by offering options with accuracy, it also reduces the complexity of the problem by reducing decision variables and condition variables in the multi-objective optimization model of DSS.