• Title/Summary/Keyword: support optimization

Search Result 765, Processing Time 0.025 seconds

Cache Simulator Design for Optimizing Write Operations of Nonvolatile Memory Based Caches (비휘발성 메모리 기반 캐시의 쓰기 작업 최적화를 위한 캐시 시뮬레이터 설계)

  • Joo, Yongsoo;Kim, Myeung-Heo;Han, In-Kyu;Lim, Sung-Soo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • Nonvolatile memory (NVM) is being considered as an alternative of traditional memory devices such as SRAM and DRAM, which suffer from various limitations due to the technology scaling of modern integrated circuits. Although NVMs have advantages including nonvolatility, low leakage current, and high density, their inferior write performance in terms of energy and endurance becomes a major challenge to the successful design of NVM-based memory systems. In order to overcome the aforementioned drawback of the NVM, extensive research is required to develop energy- and endurance-aware optimization techniques for NVM-based memory systems. However, researchers have experienced difficulty in finding a suitable simulation tool to prototype and evaluate new NVM optimization schemes because existing simulation tools do not consider the feature of NVM devices. In this article, we introduce a NVM-based cache simulator to support rapid prototyping and evaluation of NVM-based caches, as well as energy- and endurance-aware NVM cache optimization schemes. We demonstrate that the proposed NVM cache simulator can easily prototype PRAM cache and PRAM+STT-RAM hybrid cache as well as evaluate various write traffic reduction schemes and wear leveling schemes.

Loop Cancellation and Path Optimization of Path Extension Handover in a Wireless ATM LAN (무선 ATM LAN 환경에서 경로 확장 기법의 루프 제거 및 경로 최적화 알고리즘 연구)

  • 최우진;박영근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.602-610
    • /
    • 2000
  • There has been increasing interest in broadband services to mobile terminals. Wireless ATM will be used to support broadband services for future generation mobile service. We propose an algorithm for handover in wireless ATM LANs. We have studied how to treat the loop cancellation and optimization of path extension handover scheme, and present path optimization algorithms : polyangular loop cancellation and triangular loop cancellation. We express the location of MT(mobile terminal) by direction angle, and the direction angles can be converted into direction vectors. Using direction vectors, we can find the current optimal path of MT. The analysis and the experimental results show that the proposed scheme provides the better performance than that of anchor rerouting scheme in average handover delay, handover disruption delay, and buffer requirements.

  • PDF

English Digital Signal Processing Circuit in HD Monitor using Synchronization Signal Optimization (동기신호 최적화 기법을 통한 고품위급 모니터의 디지털 신호처리회로 구현)

  • 천성렬;김익환;이호근;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1152-1160
    • /
    • 2003
  • Start The current paper proposes an improved HD(High Definition) monitor that can support a signal input with various resolutions. Due to the inadequate performance of the built-in digital PLL(Phase-locked Loop) of an ADC(Analog to Digital Converter) and poor tolerance of ADC ICs, there are problems in the stable processing of synchronization signals with various input signals. Accordingly, the proposed synchronization signal optimization technique regenerates the horizontal synchronization signal in the vertical blanking interval based on the regularity of the synchronization signal, i.e. the timing of the falling edge signal remains constant, thereby solving the above problem and minimizing the interference of the system. As a result, the proposed system can stabilize various synchronization signals with different resolution modes.

Optimization of Culture Conditions for Production of Pneumococcal Capsular Polysaccharide Type IV

  • Kim, S.N.;Min, K.K.;Choi, I.H.;Kim, S.W.;Pyo, S.N.;Rhee, D.K.
    • Archives of Pharmacal Research
    • /
    • v.19 no.3
    • /
    • pp.173-177
    • /
    • 1996
  • The Pneumococcus, Streptococcus pneumoniae, has an ample polysaccharide (PS) capsule that is highly antigenic and is the main virulence factor of the organism. The capsular PS is the source of PS vaccine. This investigation was undertaken to optimize the culture conditions for the production of capsular PS by type 4 pneumococcus. Among several culture media, brain heart infusion (BHI) and Casitone based medium were found to support luxuriant growth of pneumococcus type 4 at the same level. Therefore in this study, the Casitone based medium was used to study optimization of the culture condition because of BHI broth's high cost and complex nature. The phase of growth which accomodated maximum PS production was exponential phase. Concentrations of glucose greater than 0.8% did not enhance growth or PS production. Substitution of nitrogen sources with other resources or supplementation of various concentrations of metal ion (with the exception of calcium, copper, and magnesium ions) had adverse effects on growth and PS production. On the other hand, low level aeration and supplementation of 3 mg/l concentration of asparagine, phenylalanine, or threonine were beneficial for increased PS production. The synergistic effect of all the favorable conditions observed in pneumococcal growth assays provided a two-fold cumulative increase in capsular PS production.

  • PDF

A comprehensive optimization model for integrated solid waste management system: A case study

  • Paul, Koushik;Chattopadhyay, Subhasish;Dutta, Amit;Krishna, Akhouri P.;Ray, Subhabrata
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.220-237
    • /
    • 2019
  • Solid waste management (SWM) is one of the poorly rendered services in developing countries - limited resources, increasing population, rapid urbanization and application of outdated systems leads to inefficiency. Lack of proper planning and inadequate data regarding solid waste generation and collection compound the SWM problem. Decision makers need to formulate solutions that consider multiple goals and strategies. Given the large number of available options for SWM and the inter-relationships among these options, identifying SWM strategies that satisfy economic or environmental objectives is a complex task. The paper develops a mathematical model for a municipal Integrated SWM system, taking into account waste generation rates, composition, transportation modes, processing techniques, revenues from waste processing, simulating waste management as closely as possible. The constraints include those linking waste flows and mass balance, processing plants capacity, landfill capacity, transport vehicle capacity and number of trips. The linear programming model integrating different functional elements was solved by LINGO optimization software and various possible waste management options were considered during analysis. The model thus serves as decision support tool to evaluate various waste management alternatives and obtain the least-cost combination of technologies for handling, treatment and disposal of solid waste.

Use of multi-hybrid machine learning and deep artificial intelligence in the prediction of compressive strength of concrete containing admixtures

  • Jian, Guo;Wen, Sun;Wei, Li
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.11-23
    • /
    • 2022
  • Conventional concrete needs some improvement in the mechanical properties, which can be obtained by different admixtures. However, making concrete samples costume always time and money. In this paper, different types of hybrid algorithms are applied to develop predictive models for forecasting compressive strength (CS) of concretes containing metakaolin (MK) and fly ash (FA). In this regard, three different algorithms have been used, namely multilayer perceptron (MLP), radial basis function (RBF), and support vector machine (SVR), to predict CS of concretes by considering most influencers input variables. These algorithms integrated with the grey wolf optimization (GWO) algorithm to increase the model's accuracy in predicting (GWMLP, GWRBF, and GWSVR). The proposed MLP models were implemented and evaluated in three different layers, wherein each layer, GWO, fitted the best neuron number of the hidden layer. Correspondingly, the key parameters of the SVR model are identified using the GWO method. Also, the optimization algorithm determines the hidden neurons' number and the spread value to set the RBF structure. The results show that the developed models all provide accurate predictions of the CS of concrete incorporating MK and FA with R2 larger than 0.9972 and 0.9976 in the learning and testing stage, respectively. Regarding GWMLP models, the GWMLP1 model outperforms other GWMLP networks. All in all, GWSVR has the worst performance with the lowest indices, while the highest score belongs to GWRBF.

Optimal Design of a Coudé Mirror Assembly for a 1-m Class Ground Telescope

  • Jaehyun Lee;Hyug-Gyo Rhee;Eui Seung Son;Jeon Geon Kang;Ji-Young Jeong;Pilseong Kang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.435-442
    • /
    • 2023
  • These days, the size of a reflective telescope has been increasing for astronomical observation. An additional optical system usually assists a large ground telescope for image analysis or the compensation of air turbulence. To guide collimated light to the external optical system through a designated path, a coudé mirror is usually adopted. Including a collimator, a coudé mirror of a ground telescope is affected by gravity, depending on the telescope's pointing direction. The mirror surface is deformed by the weight of the mirror itself and its mount, which deteriorates the optical performance. In this research, we propose an optimization method for the coudé mirror assembly for a 1-m class ground telescope that minimizes the gravitational surface error (SFE). Here the mirror support positions and the sizes of the mount structure are optimized using finite element analysis and the response surface optimization method in both the horizontal and vertical directions, considering the telescope's altitude angle. Throughout the whole design process, the coefficients of the Zernike polynomials are calculated and their amplitude changes are monitored to determine the optimal design parameters. At the same time, the design budgets for the thermal SFE and the mass and size of the mount are reflected in the study.

How Through-Process Optimization (TPO) Assists to Meet Product Quality

  • Klaus Jax;Yuyou Zhai;Wolfgang Oberaigner
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.131-138
    • /
    • 2024
  • This paper introduces Primetals Technologies' Through-Process Optimization (TPO) Services and Through-Process Quality Control (TPQC) System, which integrate domain knowledge, software, and automation expertise to assist steel producers in achieving operational excellence. TPQC collects high-resolution process and product data from the entire production route, providing visualizations and facilitating quality assurance. It also enables the application of artificial intelligence techniques to optimize processes, accelerate steel grade development, and enhance product quality. The main objective of TPO is to grow and digitize operational know-how, increase profitability, and better meet customer needs. The paper describes the contribution of these systems to achieving operational excellence, with a focus on quality assurance. Transparent and traceable production data is used for manual and automatic quality evaluation, resulting in product quality status and guiding the product disposition process. Deviation management is supported by rule-based and AI-based assistants, along with monitoring, alarming, and reporting functions ensuring early recognition of deviations. Embedded root cause proposals and their corrective and compensatory actions facilitate decision support to maintain product quality. Quality indicators and predictive quality models further enhance the efficiency of the quality assurance process. Utilizing the quality assurance software package, TPQC acts as a "one-truth" platform for product quality key players.

Response Time Optimization of DVR for 3-Phase Phase-Controlled Rectifier (3상 위상제어 정류기를 위한 DVR의 반응시간 최적화)

  • Park, Chul-Woo;Joung, Sookyoung;Ryu, Jee-Youl;Lee, Dae-Seup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.195-201
    • /
    • 2013
  • In this paper, we present optimization technique for the response time of DVR (Dynamic Voltage Restorer) and the possible compensation range of voltage dip by the DVR system. To protect 3-phase phase-controlled rectifier from voltage dip, DVR system needs to have optimum response time as an important design factor. Although the fast response time of DVR ensures wider range of voltage dip, DVR controller has so high cost and poor stability. This paper proposes DVR system with optimum response time required for certain intensity of voltage dips and good stability to support possible compensation range of voltage dip. Proposed technique showed optimum response time and good stability for overall system. We believe that proposed technique is reliable and useful in DVR design.

Sparse Multinomial Kernel Logistic Regression

  • Shim, Joo-Yong;Bae, Jong-Sig;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • Multinomial logistic regression is a well known multiclass classification method in the field of statistical learning. More recently, the development of sparse multinomial logistic regression model has found application in microarray classification, where explicit identification of the most informative observations is of value. In this paper, we propose a sparse multinomial kernel logistic regression model, in which the sparsity arises from the use of a Laplacian prior and a fast exact algorithm is derived by employing a bound optimization approach. Experimental results are then presented to indicate the performance of the proposed procedure.