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Sparse Multinomial Kernel Logistic Regression!

Jooyong ShimV, Jongsig Bae?, Changha Hwang®

Abstract

Multinomial logistic regression is a well known multiclass classification
method in the field of statistical learning. More recently, the development
of sparse multinomial logistic regression model has found application in mi-
croarray classification, where explicit identification of the most informative
observations is of value. In this paper, we propose a sparse multinomial ker-
nel logistic regression model, in which the sparsity arises from the use of a
Laplacian prior and a fast exact algorithm is derived by employing a bound
optimization approach. Experimental results are then presented to indicate
the performance of the proposed procedure.

Keywords: Bound optimization; Laplacian regularization; multinomial logistic regression;

sparsity; support vector machine.

1. Introduction

Multinomial logistic regression (MLR) is a popular method for multiclass
classification problems. The output of a MLR model can be interpreted as a pos-
terior estimate of the probability that an observation belongs to each of m disjoint
classes. The probabilistic nature of the MLR model affords many practical ad-
vantages, such as the ability to accommodate unequal relative class frequencies
in the training set or to apply an appropriate loss matrix in making predictions
that minimize the expected risk. As a result, this model has been adopted in a

diverse range of applications, including cancer classification and analysis of DNA
binding sites.
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Recently, a variety of methods have been explored that aim to introduce spar-
sity in supervised learning. The sparsity is desirable for the purpose of computa-
tional convenience, rather than as an aid to understanding the data. The sparsity
arises from the use of a Laplacian prior. This family of algorithms includes the rel-
evance vector machine (RVM) (Tipping, 2001), sparse online Gaussian processes
(Csato and Opper, 2002) and the informative vector machine (IVM) (Lawrence
et al., 2003). The sparse MLR (SMLR) algorithm is one of such sparse methods
that applies to multiclass and adopts a Laplacian prior to enforce sparseness (K-
ishnapuram et al., 2005; Cawley et al., 2006). These algorithms learn classifiers
that are constructed as weighted linear combinations of basis functions, where
the weights are estimated in the presence of training data. In many of these
algorithms, the set of permitted basis functions may be the original input vec-
tors themselves, some nonlinear transformation of those vectors or even kernels
centered on the training samples. In the latter case, the learned classifier will be
similar in flavor to a support vector machine (SVM) by Vapnik (1995).

In this paper we propose a kernel variant of SMLR of Krishnapuram et al.
(2005), which is called SMKLR. The SMKLR is derived by employing a bound
optimization approach based on Laplacian prior as in Krishnapuram et al. (2005).
Accordingly, we derive a fast exact algorithm for learning SMKLR that scale
favorably in the number of training samples, making it applicable to large data
sets. We compare SMKLR with RVM and SVM over a range of benchmark data
sets in terms of misclassification rates and numbers of basis kernels retained.

2. Multinomial Kernel Logistic Regression

In this section, we provide a brief description of the MKLR model. Let
x = (z1,...,24)7 be an input vector to be classified. We encode the fact that
an input vector belongs to a class k € {1,...,m} by a m x 1 0/1 valued vector
¥y = (y1,.-,Ym)T, where y, = 1 and all other coordinates are 0. MLR is a
conditional probability model of the form

T
exp(wy )
Py = 1z, w) = : (2.1)
>y exp(w?m)
parameterized by the dm x 1 vector w = (wT,...,wl )T, where wy is the d x 1

weight vector corresponding to class k and the superscript I denotes vector or
matrix transpose. This is a direct generalization of binary logistic regression
to the multiclass case. Since the probabilities must sum to one: Y -, P(yy =
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l|z,w) = 1, the weight vector for one of the classes need not be estimated.
Without loss of generality, we thus set w,, = 0 and the only parameters to be
learned are the weight vectors wy for k € {1,...,m — 1}. For the remainder of
the paper, we use w to denote the d(m—1) x 1 vector of parameters to be learned.

Classification of a new observation is based on the vector of conditional prob-
ability estimates produced by the model. In this paper we simply assign the class
with the highest conditional probability estimate:

y(x) = arg max P(y, = 1|z). (2.2)

Consider a set of training examples D = {(x;,y;)}",, =i € X C R%y, € R™.
Maximum likelihood estimation of the parameters w is equivalent to minimizing
the negative log-likelihood function:

n m-—1 n m—1
_ Z yikwi @i + »_log (1 +)° exp(wf,fmi)> . (2.3)

A nonlinear form of MLR, known as MKLR, can be obtained via the so-
called “kernel trick”, whereby a conventional MLR model is constructed in a high
dimensional feature space induced by a Mercer (1909)’s kernel. More formally,
given training data, D, a feature space F (¢ : X — F), is defined by a kernel
function, K : X x X — R, that evaluates the inner product between the images
of input vectors in the feature space, i.e. K(xy,x;) = ¢(zx)T ¢(x;). The kernel
function used here is the Gaussian kernel,

1
K(xp, @) = exp (—;Hifk - fBlH2> ,

where o2 is the kernel parameter.

The negative log-likelihood function of the MLR model constructed in the
feature space is given as follows:

n m-—1 n m—1
== v+ > _log <1 + Y eXP(mk)) ; (2.4)

i=1 k=1 i=1 k=1

where n;; = w{qﬁ(azi). The representation theorem (Kimeldorf and Wahba,
1971) guarantees that the minimizer of the negative log-likelihood (2.4) to be
ik = K iTak, where K; is the ¢th column of the kernel matrix K with elements
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K(xg,x;). Now the problem becomes obtaining the n(m — 1) x 1 vector a to
minimize

n m—1 n m—1
{a) = - Z Z yie KT ay + Z log (1 + Z exp (K;f”ak)) , (2.5)
i=1 k=1 i=1 k=1
where o = (af, ey a%_l)T. The minimization is typically accomplished using

Newton’s method, also known, in this case, as iteratively reweighted least squares
(IRWLS). Although there are other methods for performing this minimization,
none clearly outperforms IRWLS. See for details Minka (2003).

3. Sparse Multinomial Kernel Logistic Regression

The main drawback of the MKLR is that all training vectors are involved in
the final solution which is not acceptable for large data sets like gene selection
tasks. The SMKLR could be achieved here if we utilize a bound optimization
approach based on Laplacian prior.

The maximum likelihood estimate (MLE) o minimizing (2.5) generally leads
severe overfitting and so we are motivated to adopt a maximum a posteriori
(MAP) estimate or penalized MLE,

m—1
o Ap = arg m&n [E(a) - Z logp(ak)] , (3.1)
k=1

where p(a) is the Laplacian prior on o, which means that

p(ak) o< exp(—Al| ek 1), (3-2)

where ||ak|li = Y =y |aki| denotes Ly norm and X acts as a tunable penalty
parameter. Then the penalized negative log-likelihood function of the MKLR
model can be rewritten as follows:

m—1
L(a) = £{a) + 2 Y llolls- (3-3)
k=1

The inclusion of a Laplacian prior does not allow the use of the classical
IRWLS method. The bound optimization approach provides us with a tool to
attack this optimization problem. The key concept in bound optimization is that
L(a) is optimized by iteratively maximizing a surrogate function @ as follows:

a(t+1) — argllgn L(a) = arg]’rgn Q(a'a(t)) (34)
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A valid surrogate function can be

m—-1 n
)+ Z( m+|k|) (35)
k=1 =1
Now, Q(aja®) is differentiable with respect to c. Thus, we can use IRWLS
procedure to update c¢. The details are illustrated in Krishnapuram et al. (2005).
Let p;; = exp (KT ;) /(1 + % " exp (KT ey)) and then let us define p; =
(pi1s -y pim—1)T and py = (P1k, ..., Pnk)T. Then, the minimization of this sur-
rogate function leads to the update equation

Qala®) = ¢(a) +

ath = o — (H® + ALO)1GW), (3.6)

where K* = diag(K, ..., K), LY is the (m — 1)n x (m — 1)n diagonal matrix
consisting of 1ak)\ 1 and H® and GO are defined as

p diag(p)
HY = K* |diag | - : [dlag( Wy,..., diag(p®)_ 1>} K7,
L P [ dies@Y) )
Y p(f) agt)
GO =K*|-| + |+| : ||+xa®|
Yom—1 P.(:,)Z_l a‘STtL)—l

Here y ;, is denoted as 4., = (Y1, - - -, Ynk) . - It is noted that HY can be rewritten
as

n

H® = Z(diag(pg)) pgt)pft) )o K;K7T, (3.7)
i=1
where ® is the Kronecker matrix product.
As shown in Bohning (1992) and Krishnapuram et al. (2005), the Hessian of
the negative log-likelihood is upper bounded by a positive definite matrix that
does not depend on «,

n
(I-11"/m)® Y K:K] = B,
i=1
where I is an identity matrix and 1 = (1,...,1)T. Note H® < Bmeans HY —
is negative semidefinite. Thus, using the bound optimization technique, we have
a simple IRWLS procedure for updating «,

HY <

DO =

att) = o® — (B + ALO)1GW, (3.8)
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Table 4.1: Characteristics of six real data sets

Iris | New Thyroid | Wine | Leukemia | Lymphoma | Brain
No. of classes 3 3 3 3 3 5
No. of input variables | 4 5 13 | 3572(20) | 4027(20) | 5598(20)
Size of training sample | 100 143 119 48 41 28
Size of test sample 50 72 59 24 21 14
Size of total sample 150 215 178 72 62 42

Using upper bound matrix B, we do not need to compute Hessian at each
iteration, which yields a fast algorithm for the SMKLR. It is now possible to
perform exact MAP MKLR under a Laplacian prior for the same cost as the
original IRWLS algorithm for ML estimation.

4. Numerical Studies

This section illustrates how well SMKLR works for the sparseness and the
classification using the six publicly available real data sets. The characteristics
of these data sets are briefly described in Table 4.1.

Each data set is randomly divided into a training sample (67%) and a test
sample (33%). The number in parenthesis represents the number of input vari-
ables actually used in the study. It is noted that RVM does not work properly
for the case where input variables are more than observations. It is determined
by the recursive feature addition (RFA) with ranking criteria relevant to 5-fold
cross validation. We compare three sparse algorithms, i.e., SMKLR, one-vs-all
SVM and one-vs-all RVM in terms of the misclassification rates and the numbers
of basis kernels retained. Both SVM and RVM are typical sparse algorithms. We
use here one-vs-all version of SVM and RVM since the most widely used imple-
mentation is the one-vs-all method (Rifkin and Klautau, 2004). The Gaussian
kernel is used for these data sets. The procedure was repeated 50 times. For each
data set the optimal values of the kernel parameter o2 and the penalty parameter
A are determined by 5-fold cross validation. The experiments are conducted in
MATLAB environment over Pentium IV at 2.0GHz.

The averages of 50 misclassification rates by three methods are shown in Table
4.2 together with the average numbers of basis kernels retained. The average
numbers are given in parentheses. As seen from Table 4.2, the SMKLR provides
overall better classification performance than one-vs-all SVM and RVM for six
data sets. The SMKLR retains less basis kernels than one-vs-all SVM and RVM
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Table 4.2: Average misclassification rates and average numbers of basis kernels
retained

Iris New Thyroid | Wine | Leukemia | Lymphoma | Brain

SMKLR 0.0492 0.0947 0.0285 0.2392 0.0286 0.3543
(31.88) (80.71) (16.60) | (29.72) (24.29) (9.80)

one-vs-all SVM | 0.0568 0.3439 0.0380 0.3317 0.0829 0.4229
(15.24) (143.0) (31.43) | (36.59) (32.77) (15.03)

one-vs-all RVM | 0.0556 0.0811 0.0502 0.3725 0.0286 0.4729
(6.13) (103.77) (3.69) (47.39) (41.0) (15.79)

for the rest four data sets except Iris and Wine data sets. We realize that the
SMKLR provides the satisfying results regarding the classification accuracy and
the sparseness.

5. Conclusions

In this paper, we have proposed the SMKLR for learning sparse multiclassifi-
cation. In fact, sparseness is essential to achieve good generalization capabilities
of MKLR and can be enforced by using heavy tailed priors on the weights of the
linear combination of kernel functions. The SMKLR adopts a Laplacian prior to
enforce sparseness. Qur numerical studies with six data sets demonstrate that the
SMKLR provides the satisfying results regarding the classification accuracy and
the sparseness, and thus is attractive approach for multiclassification problems.
We also have found that the SMKLR takes less computing time than one-vs-all
RVM when being trained with fixed parameter values. Its applicability to large
data sets is still a delicate task from the computational point of view.
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