• 제목/요약/키워드: support optimization

검색결과 765건 처리시간 0.026초

압력용기 지지구조물의 구조최적화 연구 (Structural Optimization Study about Support Structure of Pressure Container)

  • 김창식
    • 한국군사과학기술학회지
    • /
    • 제8권2호
    • /
    • pp.22-29
    • /
    • 2005
  • In this study we performed topology optimization and size optimization about support structure of pressure container which is installed in a Common Bed. The optimization study shows that structure weight optimization results can be applied to navy ship. The topology optimization is performed by static load, homogenization and optimality criteria method and size optimization is performed by SOL200 of NASTRAN.

다점 지지된 TFT-LCD 대형 유리기판의 처짐 최소 최적화 (Optimization to Minimize Deflection of a Large LCD Glass Plate with Multi-Simply Supports)

  • 이현승;이영신;변성우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.861-864
    • /
    • 2005
  • A LCD glass plate is supported by multi-pin and golf-tee type support. In the FEM analysis, the support condition is treated as simply supported boundary .condition. In this study, the optimization on the location of multi-simply support is conducted. The size optimization method of ANSYS 8.0 is used as the optimization tool to search for the optimal support location of LCD glass plate. In the manufacturing process, the support condition is a fatal factor of quality control of LCD production. From the results of optimization, deflection decreases 51% compared with the original model.

  • PDF

Surrogate Model Based Approximate Optimization of Passive Type Deck Support Frame for Offshore Plant Float-over Installation

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.131-140
    • /
    • 2021
  • The paper deals with comparative study of various surrogate models based approximate optimization in the structural design of the passive type deck support frame under design load conditions. The passive type deck support frame was devised to facilitate both transportation and installation of 20,000 ton class topside. Structural analysis was performed using the finite element method to evaluate the strength performance of the passive type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions. The optimum design problem based on surrogate model was formulated such that thickness sizing variables of main structure members were determined by minimizing the weight of the passive type deck support frame subject to the strength performance constraints. The surrogate models used in the approximate optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. In the context of numerical performances, the solution results from approximate optimization were compared to actual non-approximate optimization. The response surface method among the surrogate models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the passive type deck support frame.

An Improved PSO Algorithm for the Classification of Multiple Power Quality Disturbances

  • Zhao, Liquan;Long, Yan
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.116-126
    • /
    • 2019
  • In this paper, an improved one-against-one support vector machine algorithm is used to classify multiple power quality disturbances. To solve the problem of parameter selection, an improved particle swarm optimization algorithm is proposed to optimize the parameters of the support vector machine. By proposing a new inertia weight expression, the particle swarm optimization algorithm can effectively conduct a global search at the outset and effectively search locally later in a study, which improves the overall classification accuracy. The experimental results show that the improved particle swarm optimization method is more accurate than a grid search algorithm optimization and other improved particle swarm optimizations with regard to its classification of multiple power quality disturbances. Furthermore, the number of support vectors is reduced.

메타모델을 이용한 플로트오버 설치 작업용 능동형 갑판지지프레임의 근사설계최적화 (Approximate Design Optimization of Active Type Desk Support Frame for Float-over Installation Using Meta-model)

  • 이동준;송창용;이강수
    • 한국산업융합학회 논문집
    • /
    • 제24권1호
    • /
    • pp.31-43
    • /
    • 2021
  • In this study, approximate design optimization using various meta-models was performed for the structural design of active type deck support frame. The active type deck support frame was newly developed to facilitate both transportation and installation of 20,000 ton class offshore plant topside. Structural analysis was carried out using the finite element method to evaluate the strength performance of the active type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions that were regulated in ship classification organization. The approximate optimum design problem based on meta-model was formulated such that thickness sizing variables of main structure members were determined by achieving the minimum weight of the active type deck support frame subject to the strength performance constraints. The meta-models used in the approximate design optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. The results from approximate design optimization were compared to actual non-approximate design optimization. The Chebyshev orthogonal polynomials among the meta-models used in the approximate design optimization represented the most pertinent optimum design results for the structure design of the active type deck support frame.

Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화 (Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression)

  • 최원;박찬우;정성기;박현범
    • 한국항공우주학회지
    • /
    • 제43권7호
    • /
    • pp.601-608
    • /
    • 2015
  • 유연날개의 공력 및 구조 설계값을 설계 변수로 하여 정적 상태에서의 정적 공탄성해석 및 최적화를 수행하였다. 정적 공탄성해석과 최적화를 위해 상용 해석소프트웨어들이 연계된 강건한 다분야 최적설계 시스템을 개발하였다. 최적화 설계변수로는 가로세로비, 테이퍼비, 후퇴각과 날개 위아래 스킨 두께를 설정하였다. 전역적 다목적 최적화를 위해 실수기반 적응영역 다목적 유전자 알고리즘을 적용하였으며 계산시간을 줄이기 위해 메타모델로 서포트벡터회귀 기법을 적용하였다. 유연날개에 대한 파레토 결과 분석을 통해 최대 항속시간과 최소 중량에 대한 최적 결과를 확인하였다.

Approximate Optimization Using Moving Least Squares Response Surface Methods: Application to FPSO Riser Support Design

  • Song, Chang-Yong;Lee, Jong-Soo;Choung, Joon-Mo
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.20-33
    • /
    • 2010
  • The paper deals with strength design of a riser support installed on floating production storage and offloading (FPSO) vessel under various loading conditions - operation, extreme, damaged, one line failure case (OLFC) and installation. The design problem is formulated such that thickness sizing variables are determined by minimizing the weight of a riser support structure subject to stresses constraints. The initial design model is generated based on an actual FPSO riser support specification. The finite element analysis (FEA) is conducted using MSC/NASTRAN, and optimal solutions are obtained via moving least squares method (MLSM) in the context of response surface based approximate optimization. For the meta-modeling of inequality constraint functions of stresses, a constraint-feasible moving least squares method (CF-MLSM) is used in the present study. The method of CF-MLSM, compared to a conventional MLSM, has been shown to ensure the constraint feasibility in a case where the approximate optimization process is employed. The optimization results present improved design performances under various riser operating conditions.

유전 알고리즘에 의한 배관 지지대의 최적배치 (Optimum Allocation of Pipe-suport by Genetic algorithm (2nd Reports, In Case of Seismic Excitation))

  • 양보석;전상범;유영훈;김진욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.128-132
    • /
    • 1997
  • This paper deals with the optimization of pipe-support allocation using the genetic algorithm, and shows the feasibility of the optimization method to actual design problems and also the convergence characteristics of optimization calculation with respect to the various seismic waves. The piping system was modeled as mass-spring system with 5 degrees of freedom and the support was as spring-damper. The support allocation problem was formulated to minimize the response of the piping system to seismic excitation.

  • PDF

A Short-Term Wind Speed Forecasting Through Support Vector Regression Regularized by Particle Swarm Optimization

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권4호
    • /
    • pp.247-253
    • /
    • 2011
  • A sustainability of electricity supply has emerged as a critical issue for low carbon green growth in South Korea. Wind power is the fastest growing source of renewable energy. However, due to its own intermittency and volatility, the power supply generated from wind energy has variability in nature. Hence, accurate forecasting of wind speed and power plays a key role in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. This paper presents a short-term wind speed prediction method based on support vector regression. Moreover, particle swarm optimization is adopted to find an optimum setting of hyper-parameters in support vector regression. An illustration is given by real-world data and the effect of model regularization by particle swarm optimization is discussed as well.

An Early Warning Model for Student Status Based on Genetic Algorithm-Optimized Radial Basis Kernel Support Vector Machine

  • Hui Li;Qixuan Huang;Chao Wang
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.263-272
    • /
    • 2024
  • A model based on genetic algorithm optimization, GA-SVM, is proposed to warn university students of their status. This model improves the predictive effect of support vector machines. The genetic optimization algorithm is used to train the hyperparameters and adjust the kernel parameters, kernel penalty factor C, and gamma to optimize the support vector machine model, which can rapidly achieve convergence to obtain the optimal solution. The experimental model was trained on open-source datasets and validated through comparisons with random forest, backpropagation neural network, and GA-SVM models. The test results show that the genetic algorithm-optimized radial basis kernel support vector machine model GA-SVM can obtain higher accuracy rates when used for early warning in university learning.