• Title/Summary/Keyword: support displacements

Search Result 104, Processing Time 0.028 seconds

Structural performance assessment of fixed offshore platform based on in-place analysis

  • Raheem, Shehata E. Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Mansour, Mahmoud H.;Omar, Mohamed
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.433-454
    • /
    • 2020
  • In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures. The structural integrity of platform components under the maximum and minimum operating loads of environmental conditions is required for risk assessment and inspection plan development. In-place analyses have been executed to check that the structural member with all appurtenances robustness and capability to support the applied loads in either storm condition or operating condition. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The analysis includes interpretation of dynamic design parameters based on the available site-specific data, together with foundation design recommendations for in-place loading conditions. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have important effects on the results of the in-place analysis behavior. The result shows that the in-place analysis is quite crucial for safe design and operation of offshore platform and assessment for existing offshore structures.

A Study on Convergency of Tunnel Displacement using Control Chart Method (관리도 기법을 이용한 터널 변위수렴 특성에 관한 연구)

  • Yim, Sung-Bin;Kim, Sung-Kwon;Seo, Yong-Seok;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.197-204
    • /
    • 2007
  • Tunnel deformation happens by excavation. After installation of support, tunnel is gradually stabilized over time. Effect of excavation on tunnel behavior decreases as increase of distance from face. If the time that the displacement converges by tunnel stabilization is estimated, processes after stabilization can be advanced and economic loss can be reduced. In this study, the distance of displacement convergent point from face in the tunnel constructed on sedimentary rock is estimated using control chart method. As the results of analysis using a control of chart, displacements in a sedimentary rock tunnel are converged within 100 m from each tunnel face.

Stress Analysis of Posterior Porcelain-Fused-to-Metal Crown by Marginal Configurations (구치부(臼齒部) 도재전장주조관(陶在前裝鑄造冠) 변연형태(邊緣形態)에 따른 응력분석(應力分析))

  • Kim, Kwang-Seok;Song, Kwang-Yup;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.161-179
    • /
    • 1987
  • To study the mechanical behaviors of the margins of porcelain-fused-to-metal crown on the posterior teeth, 5 types of margins on the lower first molar were chosen, and then the finite element models were constructed. 50kg forces were applied to the porcelain on the axial wall supported by the metal vertically. The displacements and stresses of the porcelain-fused-to-metal crown were analyzed to investigate the influence of the type of margins. The results were as follows; 1. High tensile stresses were exhibited on the porcelain of the portion of the coronal line angle insufficient metallic support. 2. In case metal coping had a good supporting form to vertical force, uniform compressive stresses were exhibited on their supporting form. 3. Tensile stresses in the inframetallic margin on the series of the shoulder with a bevel margins were decreased in the bevel portion. 4. Principal stresses on the metal of the chamfer marginal portion were decreased comparing with the series of the shoulder margins. 5. The noticeable compressive stress gradients were exhibited between axial cement layer and metal on the series of the shoulder margins. 6. The principal stresses on the marginal cement layer were higher than that of the occlusal surface and axial wall.

  • PDF

Analysis of Fluid-Induced Vibration in the APR1400 Steam Generator Tube (신형경수로1400 증기발생기 전열관의 유체유발진동 해석)

  • 이광한;정대율;변성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.84-91
    • /
    • 2003
  • Flow-Induced Vibration of steam generator tubes may result in fretting wear damage at the tube-to-support locations. KSNP(Korean Standard Nuclear Power plant) steam generators experienced fretting wear in the upper part of U-bend above the central cavity region of steam generators. This region has conditions susceptible to the flow-induced vibration, such as high flow velocity, high void fraction, and longer unsupported span. To improve its performance, APR1400 steam generator is designed with additional supports in this region to reduce unsupported span and to reduce peak velocity in the central cavity region. In this paper, we examined its performance improvement using ATHOS code. The thermal-hydraulic condition in the region of secondary side of APR1400 steam generator is obtained using the ATHOS3 code. The effective mass for modal analysis is calculated using the void fraction, enthalpy, and operating pressure information from ATHOS3 code result. With the effective mass distribution along the tube, natural frequency and mode shape is obtained using ANSYS code. Finally, stability ratios and real mean squared displacements for selected tubes of the APR1400 steam generator are computed. From these results, the current design of the APR1400 steam generator are examined.

  • PDF

Influence of Serial Moving Masses on Dynamic Behavior of a Simply Support Beam with Crack (크랙을 가진 단순지지 보의 동특성에 미치는 이동질량의 영향)

  • 손인수;조정래;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1085-1090
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported Euler-Bernoulli beams with the moving masses. The influences of the velocities of moving masses, the distance between the moving masses and a crack have been studied on the dynamic behavior or a simply supported beam system by numerical method. no presence or crack results in large deflection of beam. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. Totally, as the velocity of the moving masses and the distance between the moving masses are increased, the mid-span deflection of simply supported beam with the crack is decreased.

  • PDF

Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells

  • Bochkareva, Sergey A.;Lekomtsev, Sergey V.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.769-780
    • /
    • 2022
  • This paper studies the dynamic behavior of laminated composite circular cylindrical shells interacting with a fluid. The mathematical formulation of the dynamic problem for an elastic body is developed based on the variational principle of virtual displacements and the relations of linear elasticity theory. The behavior of an ideal compressible fluid is described by the potential theory, the equations of which together with boundary conditions are transformed to a weak form. The hydrodynamic pressure exerted by the fluid on the internal surface of the shell is calculated according to the linearized Bernoulli equation. The numerical implementation of the mathematical formulation has been done using the semi-analytical finite element method. The influence of the ply angle and lay-up configurations of laminated composites on the natural vibration frequencies and the hydroelastic stability boundary have been analyzed for shells with different geometrical dimensions and under different kinematic boundary conditions set at their edges. It has been found that the optimal value of the ply angle depends on the level of filling of the shell with a fluid. The obtained results support the view that by choosing the optimal configuration of the layered composite material it is possible to change upwards or downwards the frequency and mode shape, as well as the critical velocity for stability loss over a wide range.

Spectroscopic Detection of Alfvénic Waves in Chromospheric Mottles of a Solar Quiet Region

  • Kwak, Hannah;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.78.2-78.2
    • /
    • 2021
  • We present high resolution spectroscopic observations of transverse magnetohydrodynamic (MHD) waves in mottles located near the solar disk center. Different from previous studies that used transversal displacements of the mottles in the imaging data, we investigated the line-of-sight (LOS) velocity oscillations of the mottles in the spectral data. The observations were carried out by using the Fast Imaging Solar Spectrograph of the 1.6 meter Goode Solar Telescope of Big Bear Solar Observatory. Utilizing the spectral data of the Hα and Ca II 8542 Å lines, we measure the LOS velocity of a quiet region including the mottles and rosettes that correspond to the footpoints of the mottles. Our major findings are as follows: (1) Alfvénic waves are pervasive in the mottles. (2) The dominant period of the waves is 2 to 4 minutes. (3) From the time-distance maps of the three-minute filtered LOS velocity constructed along the mottles, it is revealed that the transverse waves in the mottles are closely related to the longitudinal waves in the rosettes. Our findings support the notion that Alfvénic waves can be generated by mode conversion of the slow magnetoacoustic waves as was shown in sunspot regions by Chae et al. (2021).

  • PDF

A study on the engineering meanings of the critical strain concept in tunnelling (터널공학에서 한계변형률 개념의 공학적 의미에 관한 연구)

  • Park, Si-Hyun;Shin, Yong-Suk;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.129-137
    • /
    • 2008
  • This paper intends to develop an assesment technique for the rapid and quantitative evaluation of tunnel safety during tunnel excavation by using displacement measurements. Control criteria for the field measurements are provided at tunnel construction sites in Korea and other countries. However, it was known that the criteria were not clear and varied depending on the construction sites. In order to make a reasonable support for guidelines, critical strain concept is introduced in this study. And the engineering meanings of the critical strain concept are investigated precisely. In order to do this, at first, the engineering meanings of the original concept from the previous researchers was investigated theoretically for the evaluation of tunnel safely. Subsequently displacement data were obtained by using the commercial program, then the evaluation of tunnel safely was conducted with the view point of previous researches. Additionally, strains are determined from the feedback analyses program by inputting measured displacements that were obtained from the commercial program, then the evaluation of tunnel safety was discussed with the critical strain concept. Consequently it can be concluded that the evaluation of tunnel safety can be determined quantitatively and rapidly in the field by introducing the critical strain concept.

  • PDF

Application of Seismic Analysis and Design Method on the Bridges by Spectral Analysis Method (스펙트럼해석법에 의한 교량의 지진해석 및 설계방법의 적용)

  • 김운학;유영화;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.17-29
    • /
    • 1997
  • Single-mode spectral analysis method is usually applied to a small-scale bridges with the simple geometric shape and uses only fundamental period to estimate the elastic earthquake forces and the displacements of the substructure. On the other hand, multi-mode spectral analysis method may be used instead if the possibilities of potential damage are developed when considering significance, scale, and geometric shape of briages. Since the dynamic responses of bridge can be significantly different depending on the modeling techniques for the restraint and support conditions etc, it may be misled to the unexpected results. In this study the dynamic analysis program which can model and analyze the bridge as a two- or three-dimensional framed structure is developed and verified with the results of other reliable program. Using this program together with the post processor, the designer can easily and readily obtain the reponses(moments, base shears, and displacements)of bridges necessary to design purpose. And further from the analysis results according to the variations of type, scale, and restraint and supprot conditions of bridges including sectional properties, applications of the effective and desirable seismic design are presented.

  • PDF

The Development of Third-Rail System Applied to Turn-out Section for Urban Maglev (도시형 자기부상열차 분기기 구간의 제3궤조 전차선 시스템 개발)

  • Min, Byong-Chan;Heo, Young-Tae;Hong, Du-Young;Lee, Won-Joo;Jo, Su-Yeon;Jeong, Nam-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3046-3051
    • /
    • 2011
  • The third-rail system is an important device supplying power directly to the Maglev train through physical contact with the collecting shoe. It is directly related to safety and reliability for the running of Maglev. However, most the third-rail system used in Korea depend on foreign product or technologies, Korea Urban Maglev in the development of appropriate power feeding is urgent. In particular, the turnout section is the weakness point in the system because bending force by turnout section movement and fatigue caused by repetitive motion as well as the expansion by temperature, the forces by Maglev collecting shoe is added th the third-rail. Therefore, this paper proposes the third-rail system appropriate for Korean Urban Maglev of turnout section. To verify the structural stability of POSCO ICT third-rail system, the finite element analysis and physical testing was performed. The third-rail is fixed on each side of the turn-out section steel structure by epoxy insulation supporter and the integral behaviors are occurred. Therefore, the maximum horizontal displacements of each support are investigated and then, it is applied to finite element model of the third-rail to investigate the moments and stress. Also, the bending test about one million times and Expansion Joint for the third-rail was performed. The third-rail system safety and reliability was identified by test line on Korea Institute of Machinery & Materials in Deajeon for under the actual usage environment such as the Maglev and turn-out operation.

  • PDF