• Title/Summary/Keyword: supply ventilation air

Search Result 179, Processing Time 0.1 seconds

Study of Pre-ventilation Effects on the Cabin Thermal Load (주차환기 시스템이 차 실내 열부하에 미치는 영향에 관한 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.84-90
    • /
    • 2014
  • The aim of this paper is to investigate the application of solar energy in reducing cabin thermal load. When a vehicle is parked under the sun in summer, the interior temperature can reach up to $70^{\circ}C$ depending on the solar intensity. Solar power, one of the green energies, is used in automobile air conditioning systems, in order to operate the blower. The power supply of a blower's voltage has been used in a solar sunroof experiment. At the climate wind tunnel, cabin temperature changes were conducted with various operating modes of an air handling system and the preventilation parking conditions of several vehicles, outdoors, was also examined. The test results of the solar sunroof, 39.3W power and 14.1% efficiency were obtained. The thermal load behavior was analysed with the air handling system operating mode differently according to the cabin temperature. By simply operating the blower, average cabin temperature decreased between $5^{\circ}C{\sim}10^{\circ}C$ in those vehicles parked outdoors in summer. This reveals that cabin thermal comfort can be improved without consuming the vehicle's extra energy, and that the performance of the air-conditioning system is better than those currently found in vehicles. Moreover, fuel economy will be increased as a result of the reduction in the use of the air-conditioning system, and many other human advantages will be gained. Such advantages include minimized VOCs and a healthy cabin environment.

An Experimental Study on Smoke Spread Using a Reduced-scale Subway Building Model (지하역사 축소모델을 이용한 연기확산에 대한 실험적 연구)

  • Kim, Myung-Bae;Choi, Byung-Il
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • Smoke propagation for the Daegu Metro fire is reproduced by a reduced-scale model experiment. The three-story station building was modeled with 1/20-scale, and the tunnel connected to the platform was not completely modeled because of its length. To include the flow resistance the tunnel provides the mesh screens were used in the model. The fire scenario was selected based on the fire growth rate of the metro car seat where the fire initiated. The time when smoke arrived at each compartment in the station building was measured by thermocouples and visualization. Regarding fire ventilation, the air supply that has been accepted as conventional design in a subway metro building intensifies smoke spread. The results show that the whole building was filled with smoke in about 10 minutes in case of no ventilation.

건축설비의 에너지보존 계획

  • 명현국
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.29 no.9
    • /
    • pp.56-62
    • /
    • 2000
  • 1997년 12월 일본 교토에서 개최된 COP3를 계기로 1999년 3월 에너지보존법이 대폭적으로 개정 및 강화되어졌다. 지구온난화의 주된 원인이 되는 이산화탄소는 에너지와 밀접한 관계를 가지고 있으므로, 에너지보존·자원보존의 추진은 지구온난화 대책의 추진과 동등한 의미를 가지고 있다고 하여도 과언이 아니다. 여기서는 건축설비계획의 관점에서 에너지보존법 개정의 요점과 그 대응책에 관해서 개요를 소개하였다.

  • PDF

A Study on the Performance Prediction of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능예측에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Jin-Hyuck
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.294-299
    • /
    • 2005
  • In order to control indoor air quality and save energy. it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. Paper heat exchanger can recover $50{\sim}70$ of the enthalpy difference between supply and exhaust air. The purpose of this research is to obtain the experimental correlations for the friction factor, heat transfer coefficient, mass transfer coefficient and permeance of paper heat exchanger, which can be used for the performance prediction of the paper heat exchanger. Pressure drop at various velocities and heat transfer rate at various dry-bulb temperatures, relative humidities, and specific humidities are measured to make experimental correlations. The results of prediction using correlations show fairly good agreement with experimental data.

  • PDF

A Study on the Simulator and Trouble Prediction Monitoring Methodology of the Automotive Air Conditioner (자동차 공조기의 시뮬레이터 및 고장예측 모니터링 기술에 관한 연구)

  • Son, Il-Moon;Kwak, Hyo-Yean
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1568-1575
    • /
    • 2013
  • There has been an increasing interest in the market of vehicle maintenance and repair equipments to decrease air pollution. However, most of the existing air conditioning system equipment in Korea have poor performance as well as non-protection against air pollution. The purpose of this paper is to develop the monitoring technology of recovering and recharging refrigerant for air conditioning system, and also to develop its related diagnostic system. This technology and system can supply the exact amount of refrigerant from the charger to the air conditioning system by precisely diagnosing and monitoring their statuses. This technology can also control recovering and recharging of refrigerant exactly by altering the recovering pressures of refrigerant according to circumstance temperatures.

A Study on The Performance of Ventilation and Maintaining Thermal Environment for a Combined Type Diffuser (급·배기 일체형 디퓨저의 환기 및 온열환경 유지성능에 대한 연구)

  • Lim, Seok-Young;Chang, Hyun-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.232-241
    • /
    • 2016
  • Installing a ventilator for an apartment house composed of over 100 dwelling units was mandated in 2006 to improve indoor air quality. In the case of mechanical ventilators, the air change rate is kept stable, however 68% of dwellers do not operate their ventilator because of an increased electrical bill and noise. In the case of natural ventilators, the former problems are settled, but there are concerns about cold draught and an increase of heating/cooling cost. Authors are developing a heat recovery type natural ventilator which is a natural ventilator equipped with total heat recovery element, and it is expected that those problems of mechanical ventilator and natural ventilator are resolved by this. The combined type diffuser of this study is an under developed fit to the heat recovery type natural ventilator above. There are no standards to evaluate the performance for this type of diffuser. Due to this issue this study investigated the performance of the ventilation and maintained a thermal environment for the combined type diffuser by comparing it with existing diffusers. The results revealed that the performances of the combined type of diffusers showed different features from the existing ones, and was estimated to be high enough in the performances above.

DEVELOPMENT OF AUTOMATIC AIR BLAST WATERING MACHINE FOR MUSHROOM GROWING

  • Choe, K.J.;Park, H.J.;Park, K.K.;Lee, S.H.;Yu, B.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.613-622
    • /
    • 2000
  • Watering operation for oyster mushroom growing houses is regarded as drudgery and time consuming farm operation for growers. Most of mushroom growing beds in oyster mushroom growing houses are designed as two-row with four floor beds, therefore the watering and ventilation between the bed floors are much difficult for farmers because of its structural design. The study aimed to reduce the watering operation and improve the mushroom growing environment through the humidification and air supply on mushroom growing beds. Results showed that appropriate size of nozzle is between 0.8~0.5ml/s for the humidification and higher than the 2.0ml/s for the watering. The optimum water supply pressure was regarded as between 1.0~2.0MPa and the uniform distribution of droplet on the bed showed on air flow speed of 14m/s. The prototype was equipped with twin nozzle with. the humidification nozzle of 0.85ml/s and watering nozzle of 5.0ml/s, and the air blast fan with the air speed of 10m/sec in each air spout. In the field test in a practical scale mushroom growing house, it was well operated dependant on the set desire by a electric control unit. The machine can be practically used as air blast watering and air blast humidification for oyster mushroom growing farms without manual.

  • PDF

STUDY ON THE THERMAL-FLUID ANALYSIS OF CRYOGENIC CHAMBER FOR COLD CLIMATE TEST OF LARGE WIND TURBINE PARTS (대형 풍력발전기 부품의 극한 환경 시험을 위한 극저온 챔버의 열유동 해석에 대한 연구)

  • Kim, M.K.;Kang, Y.H.;Park, W.G.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.8-14
    • /
    • 2015
  • More and more, spaces are decreasing which satisfy multiple requirements for wind power plants. However, areas which have excellent wind resources and are free to civil complaints occupy a large space, although they are exposed to the cryogenic environment. This study conducted a thermal-fluid analysis of a cryogenic chamber for testing large wind turbine parts exposed to the cryogenic environment. The position of supply air is placed to the upper area to compare each cooling performance for each location of various outlets in mixing ventilated conditions. The study carried out CFD analysis for the chamber both with and without a test object. For the cases without the test object, the air temperature of the upper supply and down extract type chamber was cooled faster by 5-100% than the others. However, for the cases with the test object, the object temperature of upper supply and center extract on the opposite side type chamber was cooled faster by 33-132% than the others. The cooling performance by the air inside the chamber and the test object did not show the same pattern, which implicates the need to consider the cooling performance by not only the air but also the test object in the large cryogenic chamber design for testing large parts.

Fire Modeling and Smoking Control Characteristic Analysis of Electric Room by Using FDS (FDS를 이용한 전기실의 화재모델링 및 연기제어 특성 분석)

  • Choi, Jeong-A;Lee, Min-Gu;Lee, Dae-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.662-668
    • /
    • 2018
  • Most electric rooms are located in the underground spaces of buildings. When a fire occurs in electrical equipment, the fire expands to cable insulation material, resulting in toxic smoke and combustion products. If the smoke and combustion products quickly move vertically and horizontally, the evacuation of occupants and firefighting activities will be hindered. Therefore, it is necessary to design optimal equipment for smoke control in cases of fires in electric rooms. This study analyzes the characteristics of smoke and combustion products in fires in a cubicle-type switchboard in an electric room using PyroSim, which is based on the program Fire Dynamics Simulator (FDS). The fire modeling consists of four scenarios according to the operation mode of the mechanical ventilation equipment, the amount of air supply and exhaust, and the location of the air supply slot. The analysis shows that the mechanical ventilation equipment improves the smoke density, visibility, carbon monoxide concentration, and temperature characteristics. The visibility and temperature characteristics were improved when the air flow rate and the location of the air supply slot from fire defense regulations were applied.

Prediction of Stratification Model for Diffusers in Underfloor Air Distribution System using the CFD (CFD를 활용한 바닥공조시스템 디퓨저의 성층화 모델 예측)

  • Son, Jeong-Eun;Yu, Byeong-Ho;Pang, Seung-Ki;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.105-110
    • /
    • 2017
  • Underfloor air distribution (UFAD) is an air distribution strategy for providing ventilation and space conditioning in buildings. UFAD systems use the underfloor plenum beneath a raised access floor to provide conditioned air through floor diffusers that create a vertical thermal stratification during cooling operations. Thermal stratification has significant effects on energy, indoor air quality, and thermal comfort performance. The purpose of this study was to characterize the influence of a linear bar grille diffuser on thermal stratification in both interior and perimeter zones by developing Gamma-Phi based prediction models. Forty-eight simulations were carried out using a Computational Fluid Dynamics (CFD) technique. The number of diffusers, the air flow supply, internal heat gains, and solar radiations varied among the different cases. Models to predict temperature stratification for the tested linear bar grille diffuser have been developed, which can be directly implemented into dynamic whole-building simulation software such as EnergyPlus.