• Title/Summary/Keyword: supply uncertainty

Search Result 226, Processing Time 0.025 seconds

Improvement of Ammonia Emission Inventory Estimation Methodology for Fertilizer Application in the Agricultural Sector (농업부문 비료사용 농경지의 암모니아 배출량 산정방법 개선)

  • Choi, Hanmin;Hyun, Junge;Kim, You Jin;Yoo, Gayoung
    • Journal of Climate Change Research
    • /
    • v.10 no.3
    • /
    • pp.237-242
    • /
    • 2019
  • Ammonia is main precursor gas of secondary particulate matter and contributes almost 78% of total ammonia emission from the agricultural sector in Korea. The current method of estimating ammonia emission from fertilizer application, which contributes 7% of the total emission, has high uncertainty and needs to be improved to better predict PM2.5 concentration. In this study, we suggest an improvement method for ammonia emission quantification from fertilizer application. The first improvement was in the emission factor of NPK fertilizer by conducting a field study to verify the currently used factor. The improved NPK emission factor of 52.2 kg NH ton-1N was confirmed by comparing with the value from the EEA (European Environment Agency) and adjusting the value for the Korean climate and soil conditions. We also improved the amount of fertilizer usage by including the sales amount to the fertilizer supply amount of the Korean Farmers Association, increasing total fertilizer usage by 39.8%. As the statistical data on fertilizer supply and sales are compiled yearly, we estimated monthly emission of ammonia by considering cultivated areas and timing of fertilization for each crop. In summary, we suggest a novel and practical method to improve estimation methodology of ammonia emission from the field of fertilizer application: 1) emission factor of NPK fertilizer was reconfirmed; 2) total amount of fertilizer use was revised considering fertilizer sales; and 3) monthly emission of ammonia was realized by considering different crop practices. A bottom-up approach to compile activity data is needed to increase the estimation accuracy of monthly emission of ammonia, which is very helpful for predicting PM2.5 concentration.

Development of standard gas mixtures of hydrocarbons in methane contained in aluminum cylinders (알루미늄 실린더에서 혼합 탄화수소(C6-C10) 표준가스 개발)

  • Kim, Yong-Doo;Bae, Hyun-Kil;Woo, Jin-Chun;Lee, Sangil;Oh, Sang-Hyub;Lee, Jin Hong
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.287-294
    • /
    • 2017
  • As the demand for natural gas increases with industrial development, the supply of natural gas is expected to become unstable with a shortage of imported natural gas. It is hence necessary to meet this demand by introducing and developing various types of natural gas, such as pipeline natural gas (PNG) and substituted natural gas (SNG), in addition to liquefied natural gas (LNG). The components included in PNG as well as their concentrations must be measured accurately, and a standard gas should be developed to accurately measure hydrocarbons ($C_6-C_{10}$), which are trace components included in natural gas. The components in the primary standard gas mixtures (PSMs) developed in the present study were hexane, heptane, octane, nonane, and decane with concentrations of $10-30{\mu}mol/mol$ with methane as the balance gas. Standard hydrocarbon ($C_6-C_{10}$) gas mixtures were prepared in aluminum cylinders by a gravimetric method with traceability following ISO 6142 with raw material gases, for which the purity of each component was analyzed completely. The prepared standard gas mixtures were analyzed by to evaluate the preparation consistency between the standard gas mixtures, the adsorbability of the cylinders, the variation of the stability, and the uncertainty. The results showed that aluminum cylinders have little adsorptive loss on their internal surfaces with excellent long-term stability. The developed standard gas mixture, containing hexane, heptane, octane, nonane, and decane with concentrations of $10-30{\mu}mol/mol$, showed an uncertainty in a range of 0.79 % - 1.63 %.

A Study on Selection of Standard Scenarios in Korea for Climate Change (기후변화 표준 시나리오 선정에 관한 연구)

  • Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Climate Change Research
    • /
    • v.1 no.1
    • /
    • pp.59-73
    • /
    • 2010
  • One of the most important issues for projecting future water resources and establishing climate change adaptation strategies is 'uncertainty'. In Korea, climate change research results were very heterogeneous even in a same basin, but there have been few climate change studies dealt with the uncertainty reduction. This is because emission scenarios, GCMs, downscaling, and rainfall-runoff models that were used in the previous studies were almost all different. In this research, fifty one GCM scenarios based A and B emission scenarios were downloaded and then compared with the observed values for a period from January 2001 to December 2008. The downloaded GCM scenarios in general simulated well the observed but did not simulated well the observed precipitation especially for the flood season in Korea. The accuracy of each GCM scenario was measured with the model efficiency, PDF-based, and Relative Entropy methodology. Among the selected GCM scenarios with three methodologies, the four common GCM scenarios(CGCM2.3.2(MRI-M, B1), MIROC3.2medress(NIES, B1), CGCM2.3.2(MRI-M, A2), CGCM2.3.2(MRI-M, A1B) were finally selected. Results of the four selected GCMs were heterogeneity and projected increases of precipitation for the Korean Peninsula by from 27.36% to 12.49%, respectively. It seems very risky to rely a water planning or a management policy on use of a single climate change scenario and from this research results. Therefore, the four selected GCM scenarios proposed quantitatively were considered firstly for the water supply in the dry season and the drought management strategy in the Korean Peninsula for the future.

Analysis of connectedness Between Energy Price, Tanker Freight Index, and Uncertainty (에너지 가격, 탱커운임지수, 불확실성 사이의 연계성 분석)

  • Kim, BuKwon;Yoon, Seong-Min
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.4
    • /
    • pp.87-106
    • /
    • 2022
  • Uncertainties in the energy market are increasing due to technology developments (shale revolution), trade wars, COVID-19, and the Russia-Ukraine war. Especially, since 2020, the risk of international trade in the energy market has increased significantly due to changes in the supply chain of transportation and due to prolonged demand reduction because of COVID-19 and the Russian-Ukraine war. Considering these points, this study analyzed connectedness between energy price, tanker index, and uncertainty to understand the connectedness between international trade in the energy market. Main results are summarized as follows. First, as a result of analyzing stable period and unstable period of the energy price model using the MS-VAR model, it was confirmed that both the crude oil market model and the natural gas market model had a higher probability of maintaining stable period than unstable period, increasing volatility by specific events. Second, looking at the results of the analysis of the connectedness between stable period and unstable period of the energy market, it was confirmed that in the case of total connectedness, connectedness between variables was increased in the unstable period compared to the stable period. In the case of the energy market stable period, considering the degree of connectedness, it was confirmed that the effect of the tanker freight index, which represents the demand-side factor, was significant. Third, unstable period of the natural gas market model increases rapidly compared to the crude oil market model, indicating that the volatility spillover effect of the natural gas market is greater when uncertainties affecting energy prices increase compared to the crude oil market.

The Role of Weather and Climate Information as a Growth Engine for Passing the Gross Domestic Product per Head of $20,000 (국민소득 2만달러 달성의 성장엔진으로서 기상정보의 역할)

  • Kim, Yeong-Sin;Lee, Ki-Bong;Kim, Hoe-Cheol
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • High quality meteorological information is the typical product of service business industry which can offer the investment initiative by reducing the uncertainty and by activating other related industries. It requires a high level of meteorological technology and of ability to transform such technology as merchandising products. According to the analysis of the WMO data, the level of Korean meteorological technology is comparable to that of the nation with $17,500, GDP per head. However, the income of the meteorological business agent earns in Korea is 8 billion 4 hundred million won which is less than a tenth of that made by the US or Japan. The potential for such business field in Korea will be strong enough, if one can overcome such weak points. In addition, the efforts made by the government to advance the meteorological technology have been actualized gradually. Korean government will have a chance that is comparable to offering jobs for 20,000 unemployed by creating incomes of 40 billion won by meteorological technology as a sustained economic growth engine. It is proposed that government stimulate demand and supply by focusing on sales quantity than the price. The key points for creating the new demand are marketing and outsourcing of weather and climate information by maintaining the cooperative relationship between private and public sector.

Profitability Analysis of ESS with PV Generation (PV연계형 ESS의 설치 규모에 따른 수익영향)

  • Kim, Chang Soo;Choi, Sang Bong
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.86-93
    • /
    • 2020
  • The investment in solar and wind generation is rapidly increasing with government's renewable expansion policy and Renewable Portfolio Standard (RPS). Since the large penetration of solar and wind generation increases the variability and uncertainty of supply and demand balance in power system, the government is pursuing the policy of supplying energy storage system (ESS) linked to renewable energy. ESS contributes to the ease of transmission and distribution grid by shifting PV generation from daytime to evening hours. Recently, the declining market price of REC as ESS incentive, policies to cut down incentives and limited ESS storage due to fire events lead to the aggravation of long-term profitability, thus working as a barrier of ESS spreading. In this study, the factors affecting the profit of ESS are analyzed and brief indicators are derived. Based on the indicators, the profit changes are analyzed considering the variation of REC market price and REC incentive weights. Based on the profit change with respect to the increase of ESS capacity, economical ESS installation capacity is suggested.

Feasibility study of the energy supply system for horticulture facility using dynamic energy simulation (동적 에너지 시뮬레이션을 이용한 시설원예용 에너지 공급시스템의 경제성 분석)

  • Yu, Min-Gyung;Cho, Jeong-Heum;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • Recently, the usage of renewable energy system has been recommended because of the energy saving and depletion of fossil fuel. Especially, ground source heat pump system(GSHP) has a high efficiency by using annual stable ground temperature. Also, wood pellet is low cost and a high calorific value compared to fossil fuel. However, only small number of farms have applied renewable energy system to horticultural facility because of a high initial costs and uncertainty of its cost efficiency. In this study, in order to analyze the feasibility for the horticulture, TRNSYS simulation based on the standard horticultural facility was conducted in different weather and covering material conditions. Then, comparative feasibility analysis of each energy supplying system was conducted. As a result, we have found out that a high initial cost of renewable energy system was recovered by the economics of the energy cost. Due to the energy cost reduction, the payback periods were 10-11 years in the case of GSHP and 4-6 years in the case of wood pellet boiler.

Analysis on the Basis of the Characteristics Poststructural-Cognizance Expressed in Fashion Design(I) (복식디자인에 표현된 포스트구조주의적 인식특성 분석(I))

  • Kwan, Jung-Sook
    • Fashion & Textile Research Journal
    • /
    • v.7 no.6
    • /
    • pp.585-593
    • /
    • 2005
  • Diverse and complicated trends of fashion design which were initiated at the latter part of the 20th century have been evolving in the cultural framework of Postmodernism. At this point of time, Poststructuralism, with its aims to interpret and understand modern fashion design, is a new system of thinking that reveals the contradictory aspects of rationalistic Western philosophy and accepts uncertainty and disorder as they exist. The main purpose of this study is to examine the various theoretic systems and characteristic concepts of Poststructuralism, and supply a new cognizance frame to understand the processes of fashion design with free and varied notions of deconstruction and generation, in place of the former systematic and consistent interpretation of meaning. Concerning fashion design, analysis of theories and analysis of contents. By probing and examining deconstruction theory, 'I'-other theory, textual theory, and nomadic thinking, the concepts of cognizance are classified into Nonboundariness, Otherness, and Textualism. The theoretic foundation for this analysis and classification is supplied by Derrida's deconstructional philosophy, Lacan's mental analysis, Bartes's textual theory, Deleuze's change and generation theory, together with other theories of Poststructuralism. In analysis of theories, a cognizance frame is proposed that can categorize the concepts, derived from various theories of Poststructuralism, as traits expressed in fashion design.

Correlation Analysis of Wind and Solar Power Generation Pattern for Modeling of Renewable Energy (신재생에너지 모델링을 위한 풍력 및 태양광 발전 출력 패턴 상관관계 분석)

  • Kim, Min-Jeong;Park, Young-Sik;Park, Jong-Bae;Roh, Jae-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1823-1831
    • /
    • 2011
  • When the RPS(Renewable Portfolio Standards) becomes effective in 2012, the use of renewable energy will be dramatically increased. However, there are no production simulations and demand supply programs that reflect the characteristics of the renewable energy. This paper analyzes correlations of the domestic wind power and solar power generation pattern in different areas and those of these sources' output and load pattern. Based on the regional correlation analysis, an appropriate method that uses a average output of the renewable energy or another modeling that takes account of uncertainty could be selected. Because it's output is dependent on weather condition, we can not control the generation of renewable energy, that is the reason why the correlation between the load and output pattern of sources can be helpful to determine whether the renewable energy is modeled as a generator or load modifier. Through this analysis, a basis will be provided in order to properly model the renewable energy source.

A Study on Probabilistic Reliability Evaluation of Power System Considering Solar Cell Generators (태양광발전원(太陽光發電原)을 고려한 전력계통(電力系統)의 확률논적(確率論的)인 신뢰도(信賴度) 평가(評價)에 관한 연구(硏究))

  • Park, Jeong-Je;Liang, Wu;Choi, Jae-Seok;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.486-495
    • /
    • 2009
  • This paper proposes a new methodology on reliability evaluation of a power system including solar cell generators (SCG). The SCGs using renewable energy resource such as solar radiation(SR) should be modeled as multi-state operational model because the uncertainty of the resource supply may occur an effect as same as the forced outage of generator in viewpoint of adequacy reliability of system. While a two-state model is well suited for modeling conventional generators, a multi-state model is needed to model the SCGs due to the random variation of solar radiation. This makes the method of calculating reliability evaluation indices of the SCG different from the conventional generator. After identifying the typical pattern of the SR probability distribution function(pdf) from SR actual data, this paper describes modelling, methodology and details process for reliability evaluation of the solar cell generators integrated with power system. Two test results indicate the viability of the proposed method.