• Title/Summary/Keyword: supply forecasting

Search Result 305, Processing Time 0.022 seconds

A Short-Term Wind Speed Forecasting Through Support Vector Regression Regularized by Particle Swarm Optimization

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.247-253
    • /
    • 2011
  • A sustainability of electricity supply has emerged as a critical issue for low carbon green growth in South Korea. Wind power is the fastest growing source of renewable energy. However, due to its own intermittency and volatility, the power supply generated from wind energy has variability in nature. Hence, accurate forecasting of wind speed and power plays a key role in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. This paper presents a short-term wind speed prediction method based on support vector regression. Moreover, particle swarm optimization is adopted to find an optimum setting of hyper-parameters in support vector regression. An illustration is given by real-world data and the effect of model regularization by particle swarm optimization is discussed as well.

Short-term Load Forecasting of Using Data refine for Temperature Characteristics at Jeju Island (온도특성에 대한 데이터 정제를 이용한 제주도의 단기 전력수요 예측)

  • Kim, Ki-Su;Song, Kyung-Bin
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.225-228
    • /
    • 2008
  • The electricity supply and demand to be stable to a system link increase of the variance power supply and operation are requested in jeju Island electricity system. A short-term Load forecasting which uses the characteristic of the Load is essential consequently. We use the interrelationship of the electricity Load and change of a summertime temperature and data refining in the paper. We presented a short-term Load forecasting algorithm of jeju Island and used the correlation coefficient to the criteria of the refining. We used each temperature area data to be refined and forecasted a short-term Load to an exponential smoothing method.

  • PDF

Long-Term Demand Forecasting Using Agent-Based Model : Application on Automotive Spare Parts (Agent-Based Model을 활용한 자동차 예비부품 장기수요예측)

  • Lee, Sangwook;Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.110-117
    • /
    • 2015
  • Spare part management is very important to products that have large number of parts and long lifecycle such as automobile and aircraft. Supply chain must support immediate procurement for repair. However, it is not easy to handle spare parts efficiently due to huge stock keeping units. Qualified forecasting is the basis for the supply chain to achieve the goal. In this paper, we propose an agent based modeling approach that can deal with various factors simultaneously without mathematical modeling. Simulation results show that the proposed method is reasonable to describe demand generation process, and consequently, to forecast demand of spare parts in long-term perspective.

A Study of Measuring Forecasting Accuracy Under Rromotion System (인위적인 수요창출 하에서 서비스부품의 수요예측의 정확도)

  • Rhee, Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.10-21
    • /
    • 2010
  • Promotion system can be used as strategical management weapon to enhance the sales power. Planned order system has some similarities with promotion system to create purchasing power and to supply the service parts with low price on purpose. The only difference is whether it is prearranged event or not. The effectiveness of forecasting has increased with normal state of ordering process. However, the accuracy of forecasting has diminished with irregular state of ordering, such as demand occurrences by unexpected climate change or intended planned order by the company. A planned order system is examined through the process of computing the effectiveness on the basis of forecasting in this paper. And it is suggested that how to increase the accuracy of forecasting capability under the planned order system.

Implementation of a CPFR Based on a Business Process Management System (비즈니스 프로세스 관리 시스템을 기반으로 한 CPFR의 구현)

  • Han, Yong-Ho
    • The Journal of Information Systems
    • /
    • v.17 no.4
    • /
    • pp.321-340
    • /
    • 2008
  • Collaborative planning, forecasting and replenishment (CPFR) is the most recent successful management initiative that provides supply chain collaboration. By adopting CPFR, companies can dramatically improve the effectiveness of supply chain. The CPFR process has three major sub-processes; planning, forecasting and replenishment, which are formed by a number of steps. Despite the existence of a detailed and comprehensive process model, which is published by the Voluntary Interindustry Commerce Standards Association, in practice CPFR can take a number of different forms. Therefore, this research suggests that business process management system (BPMS) can be utilized as a base system on which a CPFR is consistently constructed and implemented, regardless of a number of its possible forms. We illustrate how a CPFR protype is implemented by using a BPMS and then describe how the prototype is agilely extended to adopt a variety of changes of CPFR collaboration process.

Constructing Demand and Supply Forecasting Model of Social Service using Time Series Analysis : Focusing on the Development Rehabilitation Service (시계열 모형을 활용한 사회서비스 수요·공급모형 구축 : 발달재활서비스를 중심으로)

  • Seo, Jeong-Min
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.6
    • /
    • pp.399-410
    • /
    • 2015
  • The primary goal of the study is to examine the possibility of applying the time series model to forecasting demand and supply of social services. In the study, we used survey data based on a nationally represented sample which is secondary processed data. We selected developmental rehabilitation service. The analysis, we made models of a demand and a supply using time series analysis. Utilizing the estimates, we identified each model's pattern. This study provides an empirical evidence to suggest benefits of using the time series model for forecasting the demand and the supply pattern of newly introduced social services. We also provide discussions on policy implications of utilizing demand and supply time series models in the process of developing new social services.

Review of Collaborative Planning, Forecasting, and Replenishment as a Supply Chain Collaboration Program

  • Ryu, Chung-Suk
    • Journal of Distribution Science
    • /
    • v.12 no.3
    • /
    • pp.85-98
    • /
    • 2014
  • Purpose - This study primarily aims to represent the current trend of research on CPFR as a promising supply chain collaboration program and proposes a new framework for analyzing any collaboration programs in terms of three key collaborative features. Research design, data, and methodology - This study employs a literature review of selected studies that conduct research on CPFR. CPFR is analyzed based on the proposed framework that characterizes collaboration programs in terms of three key collaborative features. Results - The analysis based on the proposed framework reveals that the current form of CPFR continues to have some collaborative features that are not fully utilized to create an advanced collaboration program. The literature review indicates that most past studies ignore critical issues including the dynamic nature of the multiple-stage supply chain system and negotiation process for collaborative agreement in CPFR implementation. Conclusions - Results indicate that CPFR can become a better supply chain collaboration program by incorporating coordinative cost payment and joint decision making processes. Based on observations on the existing literature of CPFR, this study indicates several important issues to be addressed by future studies.

River Stage Forecasting Model Combining Wavelet Packet Transform and Artificial Neural Network (웨이블릿 패킷변환과 신경망을 결합한 하천수위 예측모델)

  • Seo, Youngmin
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1023-1036
    • /
    • 2015
  • A reliable streamflow forecasting is essential for flood disaster prevention, reservoir operation, water supply and water resources management. This study proposes a hybrid model for river stage forecasting and investigates its accuracy. The proposed model is the wavelet packet-based artificial neural network(WPANN). Wavelet packet transform(WPT) module in WPANN model is employed to decompose an input time series into approximation and detail components. The decomposed time series are then used as inputs of artificial neural network(ANN) module in WPANN model. Based on model performance indexes, WPANN models are found to produce better efficiency than ANN model. WPANN-sym10 model yields the best performance among all other models. It is found that WPT improves the accuracy of ANN model. The results obtained from this study indicate that the conjunction of WPT and ANN can improve the efficiency of ANN model and can be a potential tool for forecasting river stage more accurately.

Comparison of forecasting performance of time series models for the wholesale price of dried red peppers: focused on ARX and EGARCH

  • Lee, Hyungyoug;Hong, Seungjee;Yeo, Minsu
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.859-870
    • /
    • 2018
  • Dried red peppers are a staple agricultural product used in Korean cuisine and as such, are an important aspect of agricultural producers' income. Correctly forecasting both their supply and demand situations and price is very important in terms of the producers' income and consumer price stability. The primary objective of this study was to compare the performance of time series forecasting models for dried red peppers in Korea. In this study, three models (an autoregressive model with exogenous variables [ARX], AR-exponential generalized autoregressive conditional heteroscedasticity [EGARCH], and ARX-EGARCH) are presented for forecasting the wholesale price of dried red peppers. As a result of the analysis, it was shown that the ARX model and ARX-EGARCH model, each of which adopt both the rolling window and the adding approach and use the agricultural cooperatives price as the exogenous variable, showed a better forecasting performance compared to the autoregressive model (AR)-EGARCH model. Based on the estimation methods and results, there was no significant difference in the accuracy of the estimation between the rolling window and adding approach. In the case of dried red peppers, there is limitation in building the price forecasting models with a market-structured approach. In this regard, estimating a forecasting model using only price data and identifying the forecast performance can be expected to complement the current pricing forecast model which relies on market shipments.