• Title/Summary/Keyword: supply forecasting

Search Result 305, Processing Time 0.023 seconds

Investigation and Empirical Validation of Industry Uncertainty Risk Factors Impacting on Bankruptcy Risk of the Firm (기업부도위험에 영향을 미치는 산업 불확실성 위험요인의 탐색과 실증 분석)

  • Han, Hyun-Soo;Park, Keun-Young
    • Korean Management Science Review
    • /
    • v.33 no.3
    • /
    • pp.105-117
    • /
    • 2016
  • In this paper, we present empirical testing result to examine the validity of inbound supply and outbound demand risk factors in the sense of early predicting the firm's bankruptcy risk level. The risk factors are drawn from industry uncertainty attributes categorized as uncertainties of input market (inbound supply), and product market (outbound demand). On the basis of input-output table, industry level inbound and outbound sectors are identified to formalize supply chain structures, relevant inbound and outbound uncertainty attributes and corresponding risk factors. Subsequently, publicly available macro-economic indicators are used to appropriately quantify these risk factors. Total 68 industry level bankruptcy risk forecasting results are presented with the average R-square scores of between 53.4% and 37.1% with varying time lag. The findings offers useful insights to incorporate supply chain risk to the body of firm's bankruptcy risk level prediction literature.

The Study on the Human Resource Forecasting Model Development for Electric Power Industry (전력산업 인력수급 예측모형 개발 연구)

  • Lee, Yong-Suk;Lee, Geun-Joon;Kwak, Sang-Man
    • Korean System Dynamics Review
    • /
    • v.7 no.1
    • /
    • pp.67-90
    • /
    • 2006
  • A series of system dynamics model was developed for forecasting demand and supply of human resource in the electricity industry. To forecast demand of human resource in the electric power industry, BLS (Bureau of Labor Statistics) methodology was used. To forecast supply of human resource in the electric power industry, forecasting on the population of our country and the number of students in the department of electrical engineering were performed. After performing computer simulation with developed system dynamics model, it is discovered that the shortage of human resource in the electric power industry will be 3,000 persons per year from 2006 to 2015, and more than a double of current budget is required to overcome this shortage of human resource.

  • PDF

Development of Peak Power Demand Forecasting Model for Special-Day using ELM (ELM을 이용한 특수일 최대 전력수요 예측 모델 개발)

  • Ji, Pyeong-Shik;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.74-78
    • /
    • 2015
  • With the improvement of living standards and economic development, electricity consumption continues to grow. The electricity is a special energy which is hard to store, so its supply must be consistent with the demand. The objective of electricity demand forecasting is to make best use of electricity energy and provide balance between supply and demand. Hence, it is very important work to forecast electricity demand with higher precision. So, various forecasting methods have been developed. They can be divided into five broad categories such as time series models, regression based model, artificial intelligence techniques and fuzzy logic method without considering special-day effects. Electricity demand patterns on holidays can be often idiosyncratic and cause significant forecasting errors. Such effects are known as special-day effects and are recognized as an important issue in determining electricity demand data. In this research, we developed the power demand forecasting method using ELM(Extreme Learning Machine) for special day, particularly, lunar new year and Chuseok holiday.

An Analysis on the Forecasting Demand and Supply of Regional Industrial Labor for Customized Nurturing Human Resource: Focused on Manufacturing Industry in Chung-Nam Province (맞춤형 인력양성을 위한 지역 산업인력 수급분석: 충남지역 제조업을 중심으로)

  • Jung, Hae Yong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.2
    • /
    • pp.147-159
    • /
    • 2011
  • In this paper the demand and supply of labor are forecasted over the next 10 years for customized nurturing human resource focused on Manufacturing Industry in Chung-Nam Province. Despite that the industrial structure is rapidly changing, industrial labors are nurturing on the basis of past industrial structure. This research is conducted for reducing mismatched labors throughout forecasting human resources until 2020. As a practical approach, the BLS Methodology is partially utilized. And the previous researches and official statistics data are reviewed. In conclusion, this study presents that more human resources on Manufacturing Industry than other Industries will be needed in Chung-Nam province. In details, it shows that there will be required more Industrial labors for strategic industries for examples, Audio and Video related industry, and Car related industry which is propelling by overall local government. In additions, policy implications are developed by analyzing current status and forecasting the labor demand and supply in the Chung-Nam Manufacturing sector.

Bankruptcy Risk Level Forecasting Research for Automobile Parts Manufacturing Industry (자동차부품제조업의 부도 위험 수준 예측 연구)

  • Park, Kuen-Young;Han, Hyun-Soo
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.4
    • /
    • pp.221-234
    • /
    • 2013
  • In this paper, we report bankruptcy risk level forecasting result for automobile parts manufacturing industry. With the premise that upstream supply risk and downstream demand risk could impact on automobile parts industry bankruptcy level in advance, we draw upon industry input-output table to use the economic indicators which could reflect the extent of supply and demand risk of the automobile parts industry. To verify the validity of each economic indicator, we applied simple linear regression for each indicators by varying the time lag from one month (t-1) to 12 months (t-12). Finally, with the valid indicators obtained through the simple regressions, the composition of valid economic indicators are derived using stepwise linear regression. Using the monthly automobile parts industry bankruptcy frequency data accumulated during the 5 years, R-square values of the stepwise linear regression results are 68.7%, 91.5%, 85.3% for the 3, 6, 9 months time lag cases each respectively. The computational testing results verifies the effectiveness of our approach in forecasting bankruptcy risk forecasting of the automobile parts industry.

Short-Term Wind Speed Forecast Based on Least Squares Support Vector Machine

  • Wang, Yanling;Zhou, Xing;Liang, Likai;Zhang, Mingjun;Zhang, Qiang;Niu, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1385-1397
    • /
    • 2018
  • There are many factors that affect the wind speed. In addition, the randomness of wind speed also leads to low prediction accuracy for wind speed. According to this situation, this paper constructs the short-time forecasting model based on the least squares support vector machines (LSSVM) to forecast the wind speed. The basis of the model used in this paper is support vector regression (SVR), which is used to calculate the regression relationships between the historical data and forecasting data of wind speed. In order to improve the forecast precision, historical data is clustered by cluster analysis so that the historical data whose changing trend is similar with the forecasting data can be filtered out. The filtered historical data is used as the training samples for SVR and the parameters would be optimized by particle swarm optimization (PSO). The forecasting model is tested by actual data and the forecast precision is more accurate than the industry standards. The results prove the feasibility and reliability of the model.

CLUSTER ANALYSIS FOR REGION ELECTRIC LOAD FORECASTING SYSTEM

  • Park, Hong-Kyu;Kim, Young-Il;Park, Jin-Hyoung;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.591-593
    • /
    • 2007
  • This paper is to cluster the AMR (Automatic Meter Reading) data. The load survey system has been applied to record the power consumption of sampling the contract assortment in KEPRI AMR. The effect of the contract assortment change to the customer power consumption is determined by executing the clustering on the load survey results. We can supply the power to customer according to usage to the analysis cluster. The Korea a class of the electricity supply type is less than other country. Because of the Korea electricity markets exists one electricity provider. Need to further divide of electricity supply type for more efficient supply. We are found pattern that is different from supplied type to customer. Out experiment use the Clementine which data mining tools.

  • PDF

A Forecasting on the Market Size of Korean Solar Salt (한국 식용 천일염 시장규모 전망에 관한 연구)

  • Choi, Byung-Ok;Kim, Bae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4812-4818
    • /
    • 2013
  • This paper contains material of the supply-demand forecasting of solar salt for food in Korea. The solar salt was granted admission for food by the act of salt management in 2007. So, the yearly statistics of solar salt for food are not enough to forecast the supply-demand unsing econometrics. However, the related industry become interested in market size of the solar salt for food and the growth potential of the market. This study deal with the supply-demand forecasting of solar salt for food in light of industry of solar salt, consumption trends, export-import quantity, etc. This research results indicate that the production quantity will be 222-384 thousand MT, the export quantity will be 498-565 thousand MT, the export quantity will be 2.67-3.62 thousand MT, the consumption quantity will be 767-996 thousand MT.

Forecasting Modeling of Heavy Tail Typed Demand using Student's t-Copula Fitting in Supply Chain Management (Student's t-Copula 적합을 통한 Heavy Tail형 SCM 수요 데이터의 모델링 및 분석)

  • Kim, Taesung;Lee, Hyunsoo
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.103-111
    • /
    • 2013
  • As the demand-oriented management has been getting important in Supply Chain Management (SCM), various forecasting methods have been suggested including regression analyses. However, dependency structures among variables have been captured by a correlation coefficient, only. It results in inaccurate demand predictions. This paper suggests a new and effective forecasting modeling framework using student's t-copula function. In order to show overall modeling procedures framework, heavy tail typed numerical data and its copula estimations are provided. The suggested methodology can contribute to decrease the bullwhip effect and to stabilize volatile environment in a supply chain network.

Water demand forecasting at the DMA level considering sociodemographic and waterworks characteristics (사회인구통계 및 상수도시설 특성을 고려한 소블록 단위 물 수요예측 연구)

  • Saemmul Jin;Dooyong Choi;Kyoungpil Kim;Jayong Koo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.363-373
    • /
    • 2023
  • Numerous studies have established a correlation between sociodemographic characteristics and water usage, identifying population as a primary independent variable in mid- to long-term demand forecasting. Recent dramatic sociodemographic changes, including urban concentration-rural depopulation, low birth rates-aging population, and the rise in single-person households, are expected to impact water demand and supply patterns. This underscores the necessity for operational and managerial changes in existing water supply systems. While sociodemographic characteristics are regularly surveyed, the conducted surveys use aggregate units that do not align with the actual system. Consequently, many water demand forecasts have been conducted at the administrative district level without adequately considering the water supply system. This study presents an upward water demand forecasting model that accurately reflects real water facilities and consumers. The model comprises three key steps. Firstly, Statistics Korea's SGIS (Statistical Geological Information System) data was reorganized at the DMA level. Secondly, DMAs were classified using the SOM (Self-Organizing Map) algorithm to consider differences in water facilities and consumer characteristics. Lastly, water demand forecasting employed the PCR (Principal Component Regression) method to address multicollinearity and overfitting issues. The performance evaluation of this model was conducted for DMAs classified as rural areas due to the insufficient number of DMAs. The estimation results indicate that the correlation coefficients exceeded 0.9, and the MAPE remained within approximately 10% for the test dataset. This method is expected to be useful for reorganization plans, such as the expansion and contraction of existing facilities.