• 제목/요약/키워드: supervised training

검색결과 317건 처리시간 0.026초

SEMISUPERVISED CLASSIFICATION FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANTS

  • MA, JIANPING;JIANG, JIN
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.176-186
    • /
    • 2015
  • Pattern classifications have become important tools for fault diagnosis in nuclear power plants (NPP). However, it is often difficult to obtain training data under fault conditions to train a supervised classification model. By contrast, normal plant operating data can be easily made available through increased deployment of supervisory, control, and data acquisition systems. Such data can also be used to train classification models to improve the performance of fault diagnosis scheme. In this paper, a fault diagnosis scheme based on semisupervised classification (SSC) scheme is developed. In this scheme, new measurements collected from the plant are integrated with data observed under fault conditions to train the SSC models. The trained models are subsequently applied to new measurements for fault diagnosis. In comparison with supervised classifiers, the proposed scheme requires significantly fewer data collected under fault conditions to train the classifier. The developed scheme has been validated using different fault scenarios on a desktop NPP simulator as well as on a physical NPP simulator using a graph-based SSC algorithm. All the considered faults have been successfully diagnosed. The results have demonstrated that SSC is a promising tool for fault diagnosis in NPPs.

신경회로망을 이용한 유도전동기의 센서리스 속도제어 (Sensorless Speed Control of Induction Motor by Neural Network)

  • 김종수;김덕기;오세진;이성근;유희한;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.695-704
    • /
    • 2002
  • Generally, induction motor controller requires rotor speed sensor for commutation and current control, but it increases cost and size of the motor. So in these days, various researches including speed sensorless vector control have been reported and some of them have been put to practical use. In this paper a new speed estimation method using neural networks is proposed. The optimal neural network structure was tracked down by trial and error, and it was found that the 8-16-1 neural network has given correct results for the instantaneous rotor speed. Supervised learning methods, through which the neural network is trained to learn the input/output pattern presented, are typically used. The back-propagation technique is used to adjust the neural network weights during training. The rotor speed is calculated by weights and eight inputs to the neural network. Also, the proposed method has advantages such as the independency on machine parameters, the insensitivity to the load condition, and the stability in the low speed operation.

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • 제14권5호
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

신경회로망을 이용한 직류전동기의 센서리스 속도제어 (Sensorless Speed Control of Direct Current Motor by Neural Network)

  • 강성주;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.90-97
    • /
    • 2004
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as speed detectors. but they increase cost and size of the motor and restrict the industrial drive applications. So in these days. many Papers have reported on the sensorless operation or DC motor(3)-(5). This paper Presents a new sensorless strategy using neural networks(6)-(8). Neural network structure has three layers which are input layer. hidden layer and output layer. The optimal neural network structure was tracked down by trial and error and it was found that 4-16-1 neural network has given suitable results for the instantaneous rotor speed. Also. learning method is very important in neural network. Supervised learning methods(8) are typically used to train the neural network for learning the input/output pattern presented. The back-propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches

  • Kamran, Muhammad;Shahani, Niaz Muhammad;Armaghani, Danial Jahed
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.107-121
    • /
    • 2022
  • Coal pillar assessment is of broad importance to underground engineering structure, as the pillar failure can lead to enormous disasters. Because of the highly non-linear correlation between the pillar failure and its influential attributes, conventional forecasting techniques cannot generate accurate outcomes. To approximate the complex behavior of coal pillar, this paper elucidates a new idea to forecast the underground coal pillar stability using combined unsupervised-supervised learning. In order to build a database of the study, a total of 90 patterns of pillar cases were collected from authentic engineering structures. A state-of-the art feature depletion method, t-distribution symmetric neighbor embedding (t-SNE) has been employed to reduce significance of actual data features. Consequently, an unsupervised machine learning technique K-mean clustering was followed to reassign the t-SNE dimensionality reduced data in order to compute the relative class of coal pillar cases. Following that, the reassign dataset was divided into two parts: 70 percent for training dataset and 30 percent for testing dataset, respectively. The accuracy of the predicted data was then examined using support vector classifier (SVC) model performance measures such as precision, recall, and f1-score. As a result, the proposed model can be employed for properly predicting the pillar failure class in a variety of underground rock engineering projects.

이미지 생성 및 지도학습을 통한 전통 건축 도면 노이즈 제거 (Denoising Traditional Architectural Drawings with Image Generation and Supervised Learning)

  • 최낙관;이용식;이승재;양승준
    • 건축역사연구
    • /
    • 제31권1호
    • /
    • pp.41-50
    • /
    • 2022
  • Traditional wooden buildings deform over time and are vulnerable to fire or earthquakes. Therefore, traditional wooden buildings require continuous management and repair, and securing architectural drawings is essential for repair and restoration. Unlike modernized CAD drawings, traditional wooden building drawings scan and store hand-drawn drawings, and in this process, many noise is included due to damage to the drawing itself. These drawings are digitized, but their utilization is poor due to noise. Difficulties in systematic management of traditional wooden buildings are increasing. Noise removal by existing algorithms has limited drawings that can be applied according to noise characteristics and the performance is not uniform. This study presents deep artificial neural network based noised reduction for architectural drawings. Front/side elevation drawings, floor plans, detail drawings of Korean wooden treasure buildings were considered. First, the noise properties of the architectural drawings were learned with both a cycle generative model and heuristic image fusion methods. Consequently, a noise reduction network was trained through supervised learning using training sets prepared using the noise models. The proposed method provided effective removal of noise without deteriorating fine lines in the architectural drawings and it showed good performance for various noise types.

Classifications of Hadiths based on Supervised Learning Techniques

  • AbdElaal, Hammam M.;Bouallegue, Belgacem;Elshourbagy, Motasem;Matter, Safaa S.;AbdElghfar, Hany A.;Khattab, Mahmoud M.;Ahmed, Abdelmoty M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권11호
    • /
    • pp.1-10
    • /
    • 2022
  • This study aims to build a model is capable of classifying the categories of hadith, according to the reliability of hadith' narrators (sahih, hassan, da'if, maudu) and according to what was attributed to the Prophet Muhammad (saying, doing, describing, reporting ) using the supervised learning algorithms, with a view to discover a relationship between these classifications, based on the outputs of this model, which might be useful to avoid the controversy and useless debate on automatic classifications of hadith, using some of the statistical methods such as chi-square, information gain and association rules. The experimental results showed that there is a relation between these classifications, most of Sahih hadiths are belong to saying class, and most of maudu hadiths are belong to reporting class. Also the best classifier had given high accuracy was MultinomialNB, it achieved higher accuracy reached up to 0.9708 %, for his ability to process high dimensional problems and identifying the most important features that are relevant to target data in training stage. Followed by LinearSVC classifier, reached up to 0.9655, and finally, KNeighborsClassifier reached up to 0.9644.

다층신경망을 이용한 드론 방제의 살포 균일도 예측 (Predicting the spray uniformity of pest control drone using multi-layer perceptron)

  • 성백겸;강승우;조수현;한웅철;유승화;이춘구;강영호;이대현
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권3호
    • /
    • pp.25-34
    • /
    • 2023
  • In this study, we conducted a research on optimizing the spraying performance of agricultural drones and predicted the spraying performance in various flight conditions using the multi-layer perceptron (MLP). Data was collected using a test device for pesticide spraying performance according to the water sensitive paper (WSP) evaluation. MLP training involved supervised learning to achieve a coefficient of variation (CV), which indicates the degree of uniform spraying. The performance evaluation was conducted using R-squared (R2), the test samples showed an R2 of 0.80. The results of this study showed that drone spraying performance can be predicted under various flight environments. In addition, the correlation analysis between flight conditions and predicted spraying performance will be useful for further research on optimizing the spraying performance of agricultural drones.

약간 감독되는 포인트 클라우드 분석에서 일반 로컬 트랜스포머 네트워크 (General Local Transformer Network in Weakly-supervised Point Cloud Analysis)

  • ;이태호;;최필주;이석환;권기룡
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.528-529
    • /
    • 2023
  • Due to vast points and irregular structure, labeling full points in large-scale point clouds is highly tedious and time-consuming. To resolve this issue, we propose a novel point-based transformer network in weakly-supervised semantic segmentation, which only needs 0.1% point annotations. Our network introduces general local features, representing global factors from different neighborhoods based on their order positions. Then, we share query point weights to local features through point attention to reinforce impacts, which are essential in determining sparse point labels. Geometric encoding is introduced to balance query point impact and remind point position during training. As a result, one point in specific local areas can obtain global features from corresponding ones in other neighborhoods and reinforce from its query points. Experimental results on benchmark large-scale point clouds demonstrate our proposed network's state-of-the-art performance.

가상 훈련 데이터를 사용하는 소프트웨어 품질 분류 모델 (Software Quality Classification Model using Virtual Training Data)

  • 홍의석
    • 한국콘텐츠학회논문지
    • /
    • 제8권7호
    • /
    • pp.66-74
    • /
    • 2008
  • 소프트웨어 개발 프로세스의 초기 단계에서 결함경향성이 많은 모듈들을 예측하는 위험도 예측 모델은 프로젝트 자원할당에 도움을 주어 전체 시스템의 품질을 개선시키는 역할을 한다. 설계 복잡도 메트릭에 기반을 둔 여러 예측 모델들이 제안 되었지만 대부분 훈련 데이터 집합을 필요로 하는 모델들이었고 훈련 데이터 집합을 보유하고 있지 않은 대부분의 개발 집단들은 이들을 사용할 수 없다는 문제점이 있었다. 본 논문에서는 잘 알려진 감독형 학습 모델인 오류 역전파 신경망 모델에 SDL 시스템 명세를 정량화하여 적용한 예측 모델을 개발하였으며, 기존 학습 모델들의 문제점을 해결하기 위해 이 모델을 여러 제약조건을 가지고 만든 가상 훈련데이터집합으로 학습시켰다. 제안 모델의 사용가능성을 알아보기 위해 몇가지 모의실험을 수행 하였으며, 그 결과 제안 모델이 훈련 데이터 집합이 없는 개발 집단에서는 실제 데이터로 훈련된 예측 모델의 대안으로 사용될 수 있음을 보였다.