• Title/Summary/Keyword: supervised evaluation

Search Result 90, Processing Time 0.096 seconds

Korean Automated Scoring System for Supply-Type Items using Semi-Supervised Learning (준지도학습 방법을 이용한 한국어 서답형 문항 자동채점 시스템)

  • Cheon, Min-Ah;Seo, Hyeong-Won;Kim, Jae-Hoon;Noh, Eun-Hee;Sung, Kyung-Hee;Lim, EunYoung
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.112-116
    • /
    • 2014
  • 서답형 문항은 학생들의 종합적인 사고능력을 판단하는데 매우 유용하지만 채점할 때, 시간과 비용이 매우 많이 소요되고 채점자의 공정성을 확보해야 하는 어려움이 있다. 이러한 문제를 개선하기 위해 본 논문에서는 서답형 문항에 대한 자동채점 시스템을 제안한다. 본 논문에서 제안하는 시스템은 크게 언어 처리 단계와 채점 단계로 나뉜다. 첫 번째로 언어 처리 단계에서는 형태소 분석과 같은 한국어 정보처리 시스템을 이용하여 학생들의 답안을 분석한다. 두 번째로 채점 단계를 진행하는데 이 단계는 아래와 같은 순서로 진행된다. 1) 첫 번째 단계에서 분석 결과가 완전히 일치하는 답안들을 하나의 유형으로 간주하여 각 유형에 속한 답안의 빈도수가 높은 순서대로 정렬하여 인간 채점자가 고빈도 학생 답안을 수동으로 채점한다. 2) 현재까지 채점된 결과와 모범답안을 학습말뭉치로 간주하여 자질 추출 및 자질 가중치 학습을 수행한다. 3) 2)의 학습 결과를 토대로 미채점 답안들을 군집화하여 분류한다. 4) 분류된 결과 중에서 신뢰성이 높은 채점 답안에 대해서 인간 채점자가 확인하고 학습말뭉치에 추가한다. 5) 이와 같은 방법으로 미채점 답안이 존재하지 않을 때까지 반복한다. 제안된 시스템을 평가하기 위해서 2013년 학업성취도 평가의 사회(중3) 및 국어(고2) 과목의 서답형 문항을 사용하였다. 각 과목에서 1000개의 학생 답안을 추출하여 채점시간과 정확률을 평가하였다. 채점시간을 전체적으로 약 80% 이상 줄일 수 있었고 채점 정확률은 사회 및 국어 과목에 대해 각각 98.7%와 97.2%로 나타났다. 앞으로 자동 채점 시스템의 성능을 개선하고 인간 채점자의 집중도를 높일 수 있도록 인터페이스를 개선한다면 국가수준의 대단위 평가에 충분히 활용할 수 있을 것으로 생각한다.

  • PDF

Potential Anomaly Separation and Archeological Site Localization Using Genetically Trained Multi-level Cellular Neural Networks

  • Bilgili, Erdem;Goknar, I. Cem;Albora, Ali Muhittin;Ucan, Osman Nuri
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.294-303
    • /
    • 2005
  • In this paper, a supervised algorithm for the evaluation of geophysical sites using a multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. ML-CNN is a stochastic image processing technique based on template optimization using neighborhood relationships of the pixels. The separation/enhancement and border detection performance of the proposed method is evaluated by various interesting real applications. A genetic algorithm is used in the optimization of CNN templates. The first application is concerned with the separation of potential field data of the Dumluca chromite region, which is one of the rich reserves of Turkey; in this context, the classical approach to the gravity anomaly separation method is one of the main problems in geophysics. The other application is the border detection of archeological ruins of the Hittite Empire in Turkey. The Hittite civilization sites located at the Sivas-Altinyayla region of Turkey are among the most important archeological sites in history, one reason among others being that written documentation was first produced by this civilization.

  • PDF

Top-down Approach for User Abnormal Activity Detection Based on the Accelerometer (가속도 센서 기반 사용자 비정상 행동 검출 탑-다운 접근 방법 제안)

  • Lee, Min-Seok;Lim, Jong-Gwan;Kwon, Dong-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.368-372
    • /
    • 2009
  • The method to get the feature have been proposed to recognize the user activity by setting specific action for making the user independent result in previous research. However, it was only applied in specific environment and it was difficult to implement because it regarded only some specific feature as the recognized object. To improve this problem we detected the normality/abnormality of the activity based on the repetition and the continuity of the past activity pattern. We applied the unsupervised learning method, not supervised, and clustered the data which was collected within a certain period of time and we regarded it as the basis of the evaluation of the repetition. We demonstrated to be able to detect the abnormal activity based on wether the data was generated repeatedly.

  • PDF

Automated Analysis Approach for the Detection of High Survivable Ransomware

  • Ahmed, Yahye Abukar;Kocer, Baris;Al-rimy, Bander Ali Saleh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2236-2257
    • /
    • 2020
  • Ransomware is malicious software that encrypts the user-related files and data and holds them to ransom. Such attacks have become one of the serious threats to cyberspace. The avoidance techniques that ransomware employs such as obfuscation and/or packing makes it difficult to analyze such programs statically. Although many ransomware detection studies have been conducted, they are limited to a small portion of the attack's characteristics. To this end, this paper proposed a framework for the behavioral-based dynamic analysis of high survivable ransomware (HSR) with integrated valuable feature sets. Term Frequency-Inverse document frequency (TF-IDF) was employed to select the most useful features from the analyzed samples. Support Vector Machine (SVM) and Artificial Neural Network (ANN) were utilized to develop and implement a machine learning-based detection model able to recognize certain behavioral traits of high survivable ransomware attacks. Experimental evaluation indicates that the proposed framework achieved an area under the ROC curve of 0.987 and a few false positive rates 0.007. The experimental results indicate that the proposed framework can detect high survivable ransomware in the early stage accurately.

Learning an Artificial Neural Network Using Dynamic Particle Swarm Optimization-Backpropagation: Empirical Evaluation and Comparison

  • Devi, Swagatika;Jagadev, Alok Kumar;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a set of input-output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time, the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm, to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are compared using two different datasets, and the results are simulated.

Review for the Curriculum and License Exam of Physical Therapists in the United States

  • Choi, Chi-Whan;Jeong, Yeon-Gyu
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.4
    • /
    • pp.184-192
    • /
    • 2019
  • Purpose: This study was conducted to review the curriculum and license examination of physical therapists in the United States. Methods: The doctor of physical therapy (DPT) curriculum was evaluated by a review Course Work Tool version 6 (CWT6) data and current physical therapy licensure examination (National Physical Therapy Exam, NPTE) category in the United States. Results: The results indicated that they were required to meet the doctor of physical therapist degree based on 'Guide to Physical Therapist Practice' of American Physical Therapy Association (APTA). This includes general education in the areas of communications and humanities, physical science, biological science, social and behavioral science, and mathematics. A minimum of one course must be completed successfully in each area of general education. Moreover, there should be at least 68 didactic credits of professional education and 22 clinical education credits, which is a minimum of two full-time clinical internships with no less than 1050 hours in total, which were supervised by a physical therapist. Regarding the physical therapy licensure examination, National Physical Therapy Exam (NPTE, 2016) consisted of a physical therapy examination (26.5%), evaluation, differential diagnosis, baseline of prognosis (32.5%), intervention (28.5%), protection, responsibility, and research (6.5%) based on the 'Guide to Physical Therapist Practice'. Conclusion: Based on the study results provided above, it is considered a standard to meet domestic reality as the Guide to Physical Therapist Practice of APTA for South Korean physical therapists.

An Efficient Machine Learning-based Text Summarization in the Malayalam Language

  • P Haroon, Rosna;Gafur M, Abdul;Nisha U, Barakkath
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1778-1799
    • /
    • 2022
  • Automatic text summarization is a procedure that packs enormous content into a more limited book that incorporates significant data. Malayalam is one of the toughest languages utilized in certain areas of India, most normally in Kerala and in Lakshadweep. Natural language processing in the Malayalam language is relatively low due to the complexity of the language as well as the scarcity of available resources. In this paper, a way is proposed to deal with the text summarization process in Malayalam documents by training a model based on the Support Vector Machine classification algorithm. Different features of the text are taken into account for training the machine so that the system can output the most important data from the input text. The classifier can classify the most important, important, average, and least significant sentences into separate classes and based on this, the machine will be able to create a summary of the input document. The user can select a compression ratio so that the system will output that much fraction of the summary. The model performance is measured by using different genres of Malayalam documents as well as documents from the same domain. The model is evaluated by considering content evaluation measures precision, recall, F score, and relative utility. Obtained precision and recall value shows that the model is trustable and found to be more relevant compared to the other summarizers.

Real-time prediction of dynamic irregularity and acceleration of HSR bridges using modified LSGAN and in-service train

  • Huile Li;Tianyu Wang;Huan Yan
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.501-516
    • /
    • 2023
  • Dynamic irregularity and acceleration of bridges subjected to high-speed trains provide crucial information for comprehensive evaluation of the health state of under-track structures. This paper proposes a novel approach for real-time estimation of vertical track dynamic irregularity and bridge acceleration using deep generative adversarial network (GAN) and vibration data from in-service train. The vehicle-body and bogie acceleration responses are correlated with the two target variables by modeling train-bridge interaction (TBI) through least squares generative adversarial network (LSGAN). To realize supervised learning required in the present task, the conventional LSGAN is modified by implementing new loss function and linear activation function. The proposed approach can offer pointwise and accurate estimates of track dynamic irregularity and bridge acceleration, allowing frequent inspection of high-speed railway (HSR) bridges in an economical way. Thanks to its applicability in scenarios of high noise level and critical resonance condition, the proposed approach has a promising prospect in engineering applications.

Comparative Evaluation of Machine Learning Models for Predicting Soccer Injury Types

  • Davronbek Malikov;Jaeho Kim;Jung Kyu Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.257-268
    • /
    • 2024
  • Soccer is type of sport that carries a high risk of injury. Injury is not only cause in the unlucky soccer carrier and also team performance as well as financial effects can be worse since soccer is a team-based game. The duration of recovery from a soccer injury typically relies on its type and severity. Therefore, we conduct this research in order to predict the probability of players injury type using machine learning technologies in this paper. Furthermore, we compare different machine learning models to find the best fit model. This paper utilizes various supervised classification machine learning models, including Decision Tree, Random Forest, K-Nearest Neighbors (KNN), and Naive Bayes. Moreover, based on our finding the KNN and Decision models achieved the highest accuracy rates at 70%, surpassing other models. The Random Forest model followed closely with an accuracy score of 62%. Among the evaluated models, the Naive Bayes model demonstrated the lowest accuracy at 56%. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history.

Stock Price Prediction and Portfolio Selection Using Artificial Intelligence

  • Sandeep Patalay;Madhusudhan Rao Bandlamudi
    • Asia pacific journal of information systems
    • /
    • v.30 no.1
    • /
    • pp.31-52
    • /
    • 2020
  • Stock markets are popular investment avenues to people who plan to receive premium returns compared to other financial instruments, but they are highly volatile and risky due to the complex financial dynamics and poor understanding of the market forces involved in the price determination. A system that can forecast, predict the stock prices and automatically create a portfolio of top performing stocks is of great value to individual investors who do not have sufficient knowledge to understand the complex dynamics involved in evaluating and predicting stock prices. In this paper the authors propose a Stock prediction, Portfolio Generation and Selection model based on Machine learning algorithms, Artificial neural networks (ANNs) are used for stock price prediction, Mathematical and Statistical techniques are used for Portfolio generation and Un-Supervised Machine learning based on K-Means Clustering algorithms are used for Portfolio Evaluation and Selection which take in to account the Portfolio Return and Risk in to consideration. The model presented here is limited to predicting stock prices on a long term basis as the inputs to the model are based on fundamental attributes and intrinsic value of the stock. The results of this study are quite encouraging as the stock prediction models are able predict stock prices at least a financial quarter in advance with an accuracy of around 90 percent and the portfolio selection classifiers are giving returns in excess of average market returns.