• Title/Summary/Keyword: supervised and unsupervised classification

Search Result 100, Processing Time 0.03 seconds

A Constraint-based Semi-supervised Clustering Through Initial Prediction of Unlabeled Data (비분류표시 데이터의 초기예측을 통한 제약기반 부분-지도 군집분석)

  • Kim, Eung-Gu;Jeon, Chi-Hyeok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.383-387
    • /
    • 2007
  • Traditional clustering is regarded as an unsupervised teaming to analyze unlabeled data. Semi-supervised clustering uses a small amount of labeled data to predict labels of unlabeled data as well as to improve clustering performance. Previous methods use constraints generated from available labeled data in clustering process. We propose a new constraint-based semi-supervised clustering method by reflecting initial predicted labels of unlabeled data. We evaluate and compare the performance of the proposed method in terms of classification errors through numerical experiments with blinded labeled data.

  • PDF

Image Fusion for Improving Classification

  • Lee, Dong-Cheon;Kim, Jeong-Woo;Kwon, Jay-Hyoun;Kim, Chung;Park, Ki-Surk
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1464-1466
    • /
    • 2003
  • classification of the satellite images provides information about land cover and/or land use. Quality of the classification result depends mainly on the spatial and spectral resolutions of the images. In this study, image fusion in terms of resolution merging, and band integration with multi-source of the satellite images; Landsat ETM+ and Ikonos were carried out to improve classification. Resolution merging and band integration could generate imagery of high resolution with more spectral bands. Precise image co-registration is required to remove geometric distortion between different sources of images. Combination of unsupervised and supervised classification of the fused imagery was implemented to improve classification. 3D display of the results was possible by combining DEM with the classification result so that interpretability could be improved.

  • PDF

A Study on the Performance of Parallelepiped Classification Algorithm (평행사변형 분류 알고리즘의 성능에 대한 연구)

  • Yong, Whan-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.1-7
    • /
    • 2001
  • Remotely sensed data is the most fundamental data in acquiring the GIS informations, and may be analyzed to extract useful thematic information. Multi-spectral classification is one of the most often used methods of information extraction. The actual multi-spectral classification may be performed using either supervised or unsupervised approaches. This paper analyze the effect of assigning clever initial values to image classes on the performance of parallelepiped classification algorithm, which is one of the supervised classification algorithms. First, we investigate the effect on serial computing model, then expand it on MIMD(Multiple Instruction Multiple Data) parallel computing model. On serial computing model, the performance of the parallel pipe algorithm improved 2.4 times at most and, on MIMD parallel computing model the performance improved about 2.5 times as clever initial values are assigned to image class. Through computer simulation we find that initial values of image class greatly affect the performance of parallelepiped classification algorithms, and it can be improved greatly when classes on both serial computing model and MIMD parallel computation model.

  • PDF

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

Classification of Korean Ancient Glass Pieces by Pattern Recognition Method (패턴인지법에 의한 한국산 고대 유리제품의 분류)

  • Lee Chul;Czae Myung-Zoon;Kim Seungwon;Kang Hyung Tae;Lee Jong Du
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.113-124
    • /
    • 1992
  • The pattern recognition methods of chemometrics have been applied to multivariate data, for which ninety four Korean ancient glass pieces have been determined for 12 elements by neutron activation analysis. For the purpose, principal component analysis and non-linear mapping have been used as the unsupervised learning methods. As the result, the glass samples have been classified into 6 classes. The SIMCA (statistical isolinear multiple component analysis), adopted as a supervised learning method, has been applied to the 6 training set and the test set. The results of the 6 training set were in accord with the results by principal component analysis and non-linear mapping. For test set, 17 of 33 samples were each allocated to one of the 6 training set.

  • PDF

Developing a Multiclass Classification and Intelligent Matching System for Cold Rolled Steel Wire using Machine Learning (머신러닝을 활용한 냉간압조용 선재의 다중 분류 및 지능형 매칭 시스템 개발)

  • K.W. Lee;D.K. Lee;Y.J. Kwon;K.H, Cho;S.S. Park;K.S. Cho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.69-76
    • /
    • 2023
  • In this study, we present a system for identifying equivalent grades of standardized wire rod steel based on alloy composition using machine learning techniques. The system comprises two models, one based on a supervised multi-class classification algorithm and the other based on unsupervised autoencoder algorithm. Our evaluation showed that the supervised model exhibited superior performance in terms of prediction stability and reliability of prediction results. This system provides a useful tool for non-experts seeking similar grades of steel based on alloy composition.

A Study on Identification of Track Irregularity of High Speed Railway Track Using an SVM (SVM을 이용한 고속철도 궤도틀림 식별에 관한 연구)

  • Kim, Ki-Dong;Hwang, Soon-Hyun
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.31-39
    • /
    • 2013
  • There are two methods to make a distinction of deterioration of high-speed railway track. One is that an administrator checks for each attribute value of track induction data represented in graph and determines whether maintenance is needed or not. The other is that an administrator checks for monthly trend of attribute value of the corresponding section and determines whether maintenance is needed or not. But these methods have a weak point that it takes longer times to make decisions as the amount of track induction data increases. As a field of artificial intelligence, the method that a computer makes a distinction of deterioration of high-speed railway track automatically is based on machine learning. Types of machine learning algorism are classified into four type: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. This research uses supervised learning that analogizes a separating function form training data. The method suggested in this research uses SVM classifier which is a main type of supervised learning and shows higher efficiency binary classification problem. and it grasps the difference between two groups of data and makes a distinction of deterioration of high-speed railway track.

  • PDF

Performance of Random Forest Classifier for Flood Mapping Using Sentinel-1 SAR Images

  • Chu, Yongjae;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.375-386
    • /
    • 2022
  • The city of Khartoum, the capital of Sudan, was heavily damaged by the flood of the Nile in 2020. Classification using satellite images can define the damaged area and help emergency response. As Synthetic Aperture Radar (SAR) uses microwave that can penetrate cloud, it is suitable to use in the flood study. In this study, Random Forest classifier, one of the supervised classification algorithms, was applied to the flood event in Khartoum with various sizes of the training dataset and number of images using Sentinel-1 SAR. To create a training dataset, we used unsupervised classification and visual inspection. Firstly, Random Forest was performed by reducing the size of each class of the training dataset, but no notable difference was found. Next, we performed Random Forest with various number of images. Accuracy became better as the number of images in creased, but converged to a maximum value when the dataset covers the duration from flood to the completion of drainage.

Automatic Extraction of Initial Training Data Using National Land Cover Map and Unsupervised Classification and Updating Land Cover Map (국가토지피복도와 무감독분류를 이용한 초기 훈련자료 자동추출과 토지피복지도 갱신)

  • Soungki, Lee;Seok Keun, Choi;Sintaek, Noh;Noyeol, Lim;Juweon, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.267-275
    • /
    • 2015
  • Those land cover maps have widely been used in various fields, such as environmental studies, military strategies as well as in decision-makings. This study proposes a method to extract training data, automatically and classify the cover using ingle satellite images and national land cover maps, provided by the Ministry of Environment. For this purpose, as the initial training data, those three were used; the unsupervised classification, the ISODATA, and the existing land cover maps. The class was classified and named automatically using the class information in the existing land cover maps to overcome the difficulty in selecting classification by each class and in naming class by the unsupervised classification; so as achieve difficulty in selecting the training data in supervised classification. The extracted initial training data were utilized as the training data of MLC for the land cover classification of target satellite images, which increase the accuracy of unsupervised classification. Finally, the land cover maps could be extracted from updated training data that has been applied by an iterative method. Also, in order to reduce salt and pepper occurring in the pixel classification method, the MRF was applied in each repeated phase to enhance the accuracy of classification. It was verified quantitatively and visually that the proposed method could effectively generate the land cover maps.

Anomaly-based Alzheimer's disease detection using entropy-based probability Positron Emission Tomography images

  • Husnu Baris Baydargil;Jangsik Park;Ibrahim Furkan Ince
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.513-525
    • /
    • 2024
  • Deep neural networks trained on labeled medical data face major challenges owing to the economic costs of data acquisition through expensive medical imaging devices, expert labor for data annotation, and large datasets to achieve optimal model performance. The heterogeneity of diseases, such as Alzheimer's disease, further complicates deep learning because the test cases may substantially differ from the training data, possibly increasing the rate of false positives. We propose a reconstruction-based self-supervised anomaly detection model to overcome these challenges. It has a dual-subnetwork encoder that enhances feature encoding augmented by skip connections to the decoder for improving the gradient flow. The novel encoder captures local and global features to improve image reconstruction. In addition, we introduce an entropy-based image conversion method. Extensive evaluations show that the proposed model outperforms benchmark models in anomaly detection and classification using an encoder. The supervised and unsupervised models show improved performances when trained with data preprocessed using the proposed image conversion method.