• Title/Summary/Keyword: supervised and unsupervised classification

Search Result 100, Processing Time 0.029 seconds

Bathymetric mapping in Dong-Sha Atoll using SPOT data

  • Huang, Shih-Jen;Wen, Yao-Chung
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.525-528
    • /
    • 2006
  • The remote sensing data can be used to calculate the water depth especially in the clear and shallow water area. In this study, the SPOT data was used for bathymetric mapping in Dong-Sha atoll, located in northern South China Sea. The in situ sea depth was collected by echo sounder as well. A global positioning system was employed to locate the accurate sampling points for sea depth. An empirical model between measurement sea depth and band digital count was determined and based on least squares regression analysis. Both non-classification and unsupervised classification were used in this study. The results show that the standard error is less than 0.9m for non-classification. Besides, the 10% error related to the measurement water depth can be satisfied for more than 85% in situ data points. Otherwise, the 10% relative error can reach more than 97%, 69%, and 51% data points at class 4, 5, and 6 respectively if supervised classification is applied. Meanwhile, we also find that the unsupervised classification can get more accuracy to estimate water depth with standard error less than 0.63, 0.93, and 0.68m at class 4, 5, and 6 respectively.

  • PDF

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

Estimation of Rice-Planted Area using Landsat TM Imagery in Dangjin-gun area (Landsat TM 화상을 이용한 당진군 일원의 논면적 추정)

  • 홍석영;임상규;이규성;조인상;김길웅
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.5-15
    • /
    • 2001
  • For estimating paddy field area with Landsat TM images, two dates, May 31, 1991 (transplanting stage) and August 19, 1991 (heading stage) were selected by the data analysis of digital numbers considering rice cropping calendar. Four different estimating methods (1) rule-based classification method, (2) supervised classification(maximum likelihood), (3) unsupervised classification (ISODATA, No. of class:15), (4) unsupervised classification (ISODATA, No. of class:20) were examined. Paddy field area was estimated to 7291.19 ha by non-classification method. In comparison with topographical map (1:25,000), accuracy far paddy field area was 92%. A new image stacked by 10 layers, Landsat TM band 3,4,5, RVI, and wetness in May 31,1991 and August 19,1991 was made to estimate paddy field area by both supervised and unsupervised classification method. Paddy field was classified to 9100.98 ha by supervised classification. Error matrix showed 97.2% overall accuracy far training samples. Accuracy compared with topographical map was 95%. Unsupervised classifications by ISODATA using principal axis. Paddy field area by two different classification number of criteria were 6663.60 ha and 5704.56 ha and accuracy compared with topographical map was 87% and 82%. Irrespective of the estimating methods, paddy fields were discriminated very well by using two-date Landsat TM images in May 31,1991 (transplanting stage) and August 19,1991 (heading stage). Among estimation methods, rule-based classification method was the easiest to analyze and fast to process.

  • PDF

A Study on the Unsupervised Classification of Hyperion and ETM+ Data Using Spectral Angle and Unit Vector

  • Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • Unsupervised classification is an important area of research in image processing because supervised classification has the disadvantages such as long task-training time and high cost and low objectivity in training information. This paper focuses on unsupervised classification, which can extract ground object information with the minimum 'Spectral Angle Distance' operation on be behalf of 'Spectral Euclidian Distance' in the clustering process. Unlike previous studies, our algorithm uses the unit vector, not the spectral distance, to compute the cluster mean, and the Single-Pass algorithm automatically determines the seed points. Atmospheric correction for more accurate results was adapted on the Hyperion data and the results were analyzed. We applied the algorithm to the Hyperion and ETM+ data and compared the results with K-Means and the former USAM algorithm. From the result, USAM classified the water and dark forest area well and gave more accurate results than K-Means, so we believe that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but hyperspectral images. And also the unit vector can be an efficient technique for characterizing the Remote Sensing data.

  • PDF

Hangul Recognition Using a Hierarchical Neural Network (계층구조 신경망을 이용한 한글 인식)

  • 최동혁;류성원;강현철;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.11
    • /
    • pp.852-858
    • /
    • 1991
  • An adaptive hierarchical classifier(AHCL) for Korean character recognition using a neural net is designed. This classifier has two neural nets: USACL (Unsupervised Adaptive Classifier) and SACL (Supervised Adaptive Classifier). USACL has the input layer and the output layer. The input layer and the output layer are fully connected. The nodes in the output layer are generated by the unsupervised and nearest neighbor learning rule during learning. SACL has the input layer, the hidden layer and the output layer. The input layer and the hidden layer arefully connected, and the hidden layer and the output layer are partially connected. The nodes in the SACL are generated by the supervised and nearest neighbor learning rule during learning. USACL has pre-attentive effect, which perform partial search instead of full search during SACL classification to enhance processing speed. The input of USACL and SACL is a directional edge feature with a directional receptive field. In order to test the performance of the AHCL, various multi-font printed Hangul characters are used in learning and testing, and its processing its speed and and classification rate are compared with the conventional LVQ(Learning Vector Quantizer) which has the nearest neighbor learning rule.

  • PDF

Monitoring of Graveyards in Mountainous Areas with Simulated KOMPSAT-2 imagery

  • Chang, Eun-Mi;Kim, Min-Ho;Lee, Byung-Whan;Heo, Min
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1409-1411
    • /
    • 2003
  • The application of simulated KOMPSAT-2 imagery to monitor graveyards is to be developed. Positions calculated from image were compared with those obtained from Geographic Positioning System. With 24 checkpoints, the position of graveyards showed within 5-meter range. Unsupervised classification, supervised classification, and objected-orientation classification algorithms were used to extract the graveyard. Unsupervised classification with masking processes based on National topographic data gives the best result. The graveyards were categorized with four types in field studies while the two types of graveyards were shown in descriptive statistics. Cluster Analysis and discriminant analysis showed the consistency with two types of tombs. It was hard to get a specific spectral signature of graveyards, as they are covered with grasses at different levels and shaded from the surrounding trees. The slopes and aspects of location of graveyards did not make any difference in the spectral signatures. This study gives the basic spectral characteristics for further development of objected-oriented classification algorithms and plausibility of KOMPSAT-2 images for management of mountainous areas in the aspect of position accuracy and classification accuracy.

  • PDF

Kansas Vegetation Mapping Using Multi-Temporal Remote Sensing Data: A Hybrid Approach (계절별 위성자료를 이용한 미국 캔자스주 식생 분류 - 하이브리드 접근방식의 적용 -)

  • ;Stephen Egbert;Dana Peterson;Aimee Stewart;Chris Lauver;Kevin Price;Clayton Blodgett;Jack Cully, Jr,;Glennis Kaufman
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.667-685
    • /
    • 2003
  • To address the requirements of gap analysis for species protection, as well as the needs of state and federal agencies for detailed digital land cover, a 43-class map at the vegetation alliance level was created for the state of Kansas using multi-temporal Thematic Mapper imagery. The mapping approach included the use of three-date multi-seasonal imagery, a two-stage classification approach that first masked out cropland areas using unsupervised classification and then mapped natural vegetation with supervised classification, visualization techniques utilizing a map of small multiples and field experts, and extensive use of ancillary data in post-hoc processing. Accuracy assessment was conducted at three levels of generalization (Anderson Level I, vegetation formation, and vegetation alliance) and three cross-tabulation approaches. Overall accuracy ranged from 51.7% to 89.4%, depending on level of generalization, while accuracy figures for individual alliance classes varied by area covered and level of sampling.

Landsat Images Applied for Analyzing Spatial Flow and Water Quality Patterns in a Korea Estuary Dam

  • Park, S.W.;Torii, K.;Aoyama, S.;Cho, B. J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1239-1241
    • /
    • 2003
  • This paper presents the results of Landsat-TM imagery applications for detecting spatial variations of the water environments in the Saemankeum (STLR) project areas. The simulated tidal flow patterns from a two -dimensional hydro - dynamic model and water quality data from STRL project were used for relationships with the satellite data. Unsupervised classification of the tidal water body reflects the overall flow patterns at a flooding tide. Regressive equations for water quality parameters were derived and used for supervised classifications. The results were found to be useful to synoptically evaluate the water environments during the construction stages of the STLR project.

  • PDF

The Application of RS and GIS Technologies on Landslide Information Extraction of ALOS Images in Yanbian Area, China

  • Quan, He Chun;Lee, Byung Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.85-93
    • /
    • 2015
  • This paper mainly introduces the methods of extracting landslide information using ALOS(Advanced Land Observing Satellite) images and GIS(Geographical Information System) technology. In this study, we classified images using three different methods which are the unsupervised the supervised and the PCA(Principal Components Analysis) for extracting landslide information based on characteristics of ALOS image. From the image classification results, we found out that the quality of classified image extracted with PCA supervised method was superior than the other images extracted with the other methods. But the accuracy of landslide information extracted from this image classification was still very low as the pixels were very similar between the landslide and safety regions. It means that it is really difficult to distinguish those areas with an image classification method alone because the values of pixels between the landslide and other areas were similar, particularly in a region where the landslide and other areas coexist. To solve this problem, we used the LSM(Landslide Susceptibility Map) created with ArcView software through weighted overlay GIS method in the areas. Finally, the developed LSM was applied to the image classification process using the ALOS images. The accuracy of the extracted landslide information was improved after adopting the PCA and LSM methods. Finally, we found that the landslide region in the study area can be calculated and the accuracy can also be improved with the LSM and PCA image classification methods using GIS tools.

PCA-based Feature Extraction using Class Information (클래스 정보를 이용한 PCA 기반의 특징 추출)

  • Park, Myoung-Soo;Na, Jin-Hee;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.492-497
    • /
    • 2005
  • Feature extraction is important to classify data with large dimension such as image data. The representative feature extraction methods lot feature extraction ate PCA, ICA, LDA and MLP, etc. These algorithms can be classified in two groups: unsupervised algorithms such as PCA, LDA, and supervised algorithms such as LDA, MLP. Among these two groups, supervised algorithms are more suitable to extract the features for classification because of the class information of input data. In this paper we suggest a new feature extraction algorithm PCA-FX which uses class information with PCA to extract ieatures for classification. We test our algorithm using Yale face database and compare the performance of proposed algorithm with those of other algorithms.