• Title/Summary/Keyword: superstructures

Search Result 171, Processing Time 0.023 seconds

Bridge Superstructures Design by Special Othotropic Plate Theory (특별직교 이방성 판 이론에 의한 교랑 상부구조 설계)

  • Kim, Dun-Hyun;Han, Bong-Koo;Lim, Tae-Ho;Oh, Sang-Sub
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.171-174
    • /
    • 2003
  • The Special orthotropic plate theory is used for analysis of panels made of steel girders and cross-beams, and made of reinforced concrete. The cross-sections of girders and cross-beams are WF types. The result is compared with that of the beam theory. According to the numerical examination given in this paper, the result by the plate theory is 2.43 times stiffer than that of beam theory, The result for the concrete slab in given for the practicing engineers.

  • PDF

Finite element modeling of slab-on-beam concrete bridge superstructures

  • Patrick, Michael D.;Huo, X. Sharon
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.355-369
    • /
    • 2004
  • This paper presents a study of four finite element techniques that can be used to model slabon-beam highway bridges. The feasibility and correctness of each modeling technique are examined by applying them to a prestressed concrete I-beam bridge and a prestressed concrete box-beam bridge. Other issues related to bridge modeling such as torsional constant, support conditions, and quality control check are studied in detail and discussed in the paper. It is found that, under truck loading, the bending stress distribution in a beam section depends on the modeling technique being utilized. It is observed that the behavior of the bridge superstructure can be better represented when accounting for composite behavior between the supporting beams and slab.

Effect of reducing tsunami damage by installing fairing in Kesen-Bridge

  • Abukawa, Takahiro;Nakamura, Yuto;Hasegawa, Akira
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1045-1060
    • /
    • 2014
  • The 2011 off the Pacific coast of Tohoku Earthquake brought serious damage around the Tohoku district in Japan, and much human life and fortune were lost. Bridges were damaged by this earthquake. It was the most serious damage that the superstructures of bridges were flowed out by tsunami. Earthquakes of the same scale are predicted in other areas of Japan. It is necessary to take measures for bridges near coast. In order to understand the tsunami force acting on the bridge, hydraulic model experiments was conducted. In addition, this paper focused on fairing that is effective in wind resistant stability. Installing fairing to bridges has been verified by experiments whether it is possible to reduce the force of tsunami.

Evaluation of Economy Feasibility for Bridge Superstructures Using LCC Optimal Design (LCC 최적설계를 황용한 교량 상부구조의 경제성 평가)

  • Ahn Ye-Jun;Lee Kwang-Kyun;Park Jang-Ho;Shin Young-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.549-556
    • /
    • 2006
  • Life cycle cost is one of important factors in the evaluation of economy feasibility. Load carrying capacity curves for girders and decks are derived on the basis of bridge diagnostic results and condition grade curves to determine the service life and life cycle profile. The total life cycle costs including initial cost, damage cost, maintenance cost, user cost, and etc for the service life are calculated for steel box girder, PSC-I girder and rationalized plate girder. The optimal designs are performed for various service lifes and different superstructure types. The effects of parameters on the life cycle cost are investigated and the economy feasibility is evaluated through the sensitivity analysis.

  • PDF

Effects of Bearing Damage on Bridge Seismic Responses (교량시스템의 지진응답특성에 미치는 받침손상의 영향)

  • 김상효;마호성;이상우;조병철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.287-294
    • /
    • 2001
  • Dynamic responses of multi-span simply supported bridges are investigated to examine the effect of damaged bearings under seismic excitations. The damaged bearings are modeled as sliding elements with friction between the super-structure and the pier top. Various values of the friction coefficients for damaged bearings are examined with increasing magnitudes of peak ground accelerations. It is found that the g1oba1 seismic behaviors are significantly influenced by the occurrence of bearing damage. It should be noticed that the most possible location of unseating failure of superstructures differs with that in the model without consideration of the bearing damage. It can be concluded that the bearing damage may play the major role in the unseating failure of a bridge system, so that the damage of bearings should be included to achieve more rational seismic safety evaluation.

  • PDF

Earthquake Resistant Design of Steel Box Bridges considering Failure Mechanism (파괴메카니즘을 고려한 강박스교량의 내진설계)

  • 국승규;이동휘
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.330-337
    • /
    • 2002
  • The objective of the earthquake resistant design of structures is to satisfy on the one side the minimization of damage requirement under earthquakes with high probability of occurrence during the design life and on the other side the no collapse requirement under the design seismic event with low probability of occurrence. The two requirements are satisfied with the minimum strength of substructure as well as the ductile failure mechanism presented in the codes. In this study seismic performance is evaluated with two bridges which have steel box superstructures and T type, II type piers as substructures. In order to satisfy the two requirements redesign of both substructures and steel bearings are carried out.

  • PDF

Development of Steel Confined Prestressed Concrete Girder (I형상의 강재로 구속된 프리스트레스트 콘크리트 충전 합성거더 시공기술(SCP 합성거더))

  • 엄영호;황윤국;김정호;권책;이우종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.601-608
    • /
    • 2003
  • A new type of bridge superstructures referred to as Steel-confined Prestressed Concrete Girder (SCP Girder) was developed, which is composed of concrete, steel plate, and prestressing tendon. The girder may maximize structural advantages of these components : thus, long span bridges with low height girder may be constructed. For the effective design and fabrication of the girder, the design software program was developed and the process of fabrication established. The experimental girder designed using the program was manufactured in actual size to confirm the fabric ability of the girder. Propriety of design, structural safety, and applicability of the girder were verified through the load test.

  • PDF

Optimum Design of Piled Raft Foundations Using Genetic Algorithm(II) - Comparison with Laboratory Model Test Results - (유전자 알고리즘을 이용한 Piled Raft 기초의 최적설계(II) - 실내모형실험결과의 비교 -)

  • 김홍택;강인규;박순규;박정주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.379-386
    • /
    • 2001
  • Piled raft foundations are usually used to reduce total and differential settlements of superstructures. In the piled raft foundations, the raft is often on its own able to provide adequate bearing capacity and only few widely spaced piles are added to the foundation to keep settlements be1ow a certain limit. In this paper, experimental studies on the load sharing ratio between piles and raft are carried out. Also, for evaluating the application of optimum design technique using a genetic algorithm, optimal locations of files are compared with the results of laboratory model tests. from tile results of laboratory model tests, there are found that the load sharing ratio between files and raft is depended on the number of piles and stiffness of raft, and the optimal locations of piles became concentrated on the middle of rafts. From these results of laboratory model tests, the optimum technique using a genetic algorithm is acknowledged to the application in the piled raft.

  • PDF

Review of static soil-framed structure interaction

  • Dalili S., Mohammad;Huat, B.B.K.;Jaafar, M.S.;Alkarni, A.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.1
    • /
    • pp.51-81
    • /
    • 2013
  • A wide literature review on Static Soil-Structure-Interaction (SSI) is done to highlight the key impacts of soil complexity on structural members of framed structures. Attention is paid to the developed approaches, i.e., conventional and Finite Element Method (FEM), to emphasize on deficiencies and merits of the proposed methods according to their applicability, accuracy and power to model and idealization of the superstructures as well as the soil continuum. Proposed hypothesis are much deeply discussed herein for better understanding which is normally neglected in literature review papers due to the large number of references and limit of space.

A Study on the Control Technology for Global Distortion of the Deck in the Superstructure during Manufacturing Process (선루 제작시 데크의 전 변형 제어에 관한 연구)

  • Kim, Ha-Geun;Shin, Sang-Beom;Kim, Kyung-Gyu
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.64-68
    • /
    • 2010
  • The purpose of this study is to develop the control technology of global distortion in the deck of superstructures during manufacturing processes. The behavior of global distortion in the deck was evaluated by FEA and verified through comparing with the measured results by 3D measuring instrument. It was seen from the results that the principal factor inducing the global distortion is to be the bending moment associated with the longitudinal shrinkage force and transverse shrinkage caused by welding of stiffeners and flame heating to correct the excessive local out-of-plane distortion. Based on the results, the amount of reverse distortion in the thin deck plate was determined to control the global distortion in the deck plate. The proposed distortion control technology was verified by applying it to the actual structure.