DOI QR코드

DOI QR Code

Review of static soil-framed structure interaction

  • Dalili S., Mohammad (Civil Engineering Department, Faculty of Engineering, Universiti Putra Malaysia) ;
  • Huat, B.B.K. (Civil Engineering Department, Faculty of Engineering, Universiti Putra Malaysia) ;
  • Jaafar, M.S. (Civil Engineering Department, Faculty of Engineering, Universiti Putra Malaysia) ;
  • Alkarni, A. (College of Engineering, Geotechnical Engineering Faculty, King Saud University)
  • Received : 2012.11.15
  • Accepted : 2013.03.18
  • Published : 2013.03.25

Abstract

A wide literature review on Static Soil-Structure-Interaction (SSI) is done to highlight the key impacts of soil complexity on structural members of framed structures. Attention is paid to the developed approaches, i.e., conventional and Finite Element Method (FEM), to emphasize on deficiencies and merits of the proposed methods according to their applicability, accuracy and power to model and idealization of the superstructures as well as the soil continuum. Proposed hypothesis are much deeply discussed herein for better understanding which is normally neglected in literature review papers due to the large number of references and limit of space.

Keywords

References

  1. Agrawal, R. and Hora, M. (2010), "Effect of differential settlements on nonlinear interaction behaviour of plane frame-soil system", J. Eng. Appl. Sci., 5(7), 75-87.
  2. Aivazzadeh, S. and Verchery, G. (1986), "Stress analysis at the interface in adhesive joints by special finite elements", Int. J. Adhes. Adhes., 6(4), 185-188. https://doi.org/10.1016/0143-7496(86)90004-7
  3. Al-Mahaidi, R., Al-Khalil, A. and Ghalib, A. (1990), "Analysis of beams resting on nonlinear media by the stiffness method", Comput. Struct., 37(1), 17-25. https://doi.org/10.1016/0045-7949(90)90193-6
  4. Almeida, V.S. and de Paiva, J.B. (2004), "A mixed BEM-FEM formulation for layered soil-superstructure interaction", Eng. Anal. Bound. Elem., 28(9), 1111-1121. https://doi.org/10.1016/j.enganabound.2004.03.002
  5. Boulbibane, M. and Ponter, A. (2005), "Limit loads for multilayered half-space using the linear matching method", Comput. Geotech., 32(7), 535-544. https://doi.org/10.1016/j.compgeo.2005.09.002
  6. Brown, P.T. and Si, K. (1986), "Load sequence and structure-foundation interaction", J. Struct. Eng., 112(3), 481-488. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:3(481)
  7. Carter, J.P. (2006), Application of structured soil models to shallow footing problems, Geotechnical Special Publication 150, 21.
  8. Chandrashekhara, K. and Antony, S.J. (1993), "Theoretical and experimental investigation of framed structure-layered soil interaction problems", Comput. Struct., 48(2), 263-271. https://doi.org/10.1016/0045-7949(93)90419-E
  9. Chowdhury, I. and Dasgupta, S.P. (2008), Dynamics of structure and foundation-A unified approach: 1. Fundamentals, Taylor & Francis, UK.
  10. Colasanti, R.J. and Horvath, J.S. (2010), "Practical subgrade model for improved soil-structure interaction analysis: software implementation", Practice Period. Struct. Des. Constr., 15(4), 278-286. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000060
  11. Coutinho, A., Martins, M., Sydenstricker, R., Alves, J. and Landau, L. (2003), "Simple zero thickness kinematically consistent interface elements", Comput. Geotech., 30(5), 347-374. https://doi.org/10.1016/S0266-352X(03)00013-2
  12. Dakoulas, P. and Sun, Y. (1992), "Fine ottawa sand: experimental behavior and theoretical predictions", J. Geotech. Eng., 118(12), 1906-1923. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:12(1906)
  13. Dalili, M., Alkarni, A., Noorzaei, J., Paknahad, M., Jaafar, M. and Huat, B. (2011), "Numerical simulation of soil-structure interaction in framed and shear-wall structures", Interact. Multiscale Mech., 4(1), 17-34. https://doi.org/10.12989/imm.2011.4.1.017
  14. Desai, C. and Rigby, D. (1995), "Modelling and testing of interfaces", Appl. Mech., 42, 107-125.
  15. Desai, C., Zaman, M., Lightner, J. and Siriwardane, H. (1984), "Thin-layer element for interfaces and joints", Int. J. Numer. Anal. Meth. Geomech., 8(1), 19-43. https://doi.org/10.1002/nag.1610080103
  16. Desai, C.S. and Ma, Y. (1992), "Modelling of joints and interfaces using the disturbed-state concept", Int. J. Numer. Anal. Meth. Geomech., 16(9), 623-653. https://doi.org/10.1002/nag.1610160903
  17. Dolarevic, S. and Ibrahimbegovic, A. (2007), "A modified three-surface elasto-plastic cap model and its numerical implementation", Comput. Struct., 85(7), 419-430. https://doi.org/10.1016/j.compstruc.2006.10.001
  18. DorMohammadi, H. and Khoei, A. (2008), "A three-invariant cap model with isotropica kinematic hardening rule and associated plasticity for granular materials", Int. J. Solid. Struct., 45(2), 631-656. https://doi.org/10.1016/j.ijsolstr.2007.08.019
  19. Evgin, E., Fakharian, K. and Mohareb, M. (2003), "Numerical analysis of stress states in soil-structure interface tests", Proceedings of The 13th International Offshore and Polar Engineering Conference, Hawaii, USA.
  20. Foye, K., Basu, P. and Prezzi, M. (2008), "Immediate settlement of shallow foundations bearing on clay", Int. J. Geomech., 8(5), 300-310. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:5(300)
  21. Godbole, P., Viladkar, M. and Noorzaei, J. (1990), "Nonlinear soil-structure interaction analysis using coupled finite-infinite elements", Comput. Struct., 36(6), 1089-1096. https://doi.org/10.1016/0045-7949(90)90216-O
  22. Grammatikopoulou, A., Zdravkovic, L. and Potts, D. (2006), "General formulation of two kinematic hardening constitutive models with a smooth elastoplastic transition", Int. J. Geomech., 6(5), 291-302. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:5(291)
  23. Guo, R. and Li, G. (2008), "Elasto-plastic constitutive model for geotechnical materials with strain-softening behavior", Comput. Geosci., 34(1), 14-23. https://doi.org/10.1016/j.cageo.2007.03.012
  24. Horvath, J.S. (1983a), "Modulus of subgrade reaction: new perspective", J. Geotech. Eng., 109(12), 1591-1596. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:12(1591)
  25. Horvath, J.S. (1983b), "New subgrade model applied to mat foundations", J. Geotech. Eng., 109(12), 1567-1587. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:12(1567)
  26. Horvath, J.S. (1993), "Beam-column-analogy model for soil-structure interaction analysis", J. Geotech. Eng., 119(2), 358-364. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:2(358)
  27. Horvath, J.S. and Colasanti, R.J. (2011a), "Practical subgrade model for improved soil-structure interaction analysis: model development", Int. J. Geomech., 11(1), 59-64. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000070
  28. Horvath, J.S. and Colasanti, R.J. (2011b), Soil structure interaction project a practical subgrade model for improved soil structure interaction analysis: parameter assessment, Research report, Manhattan college.
  29. Hu, L. and Pu, J.L. (2003), "Application of damage model for soil-structure interface", Comput. Geotech., 30(2), 165-183. https://doi.org/10.1016/S0266-352X(02)00059-9
  30. Hu, L. and Pu, J. (2004), "Testing and modeling of soil-structure interface", J. Geotech. Geoenviron. Eng., 130(8), 851-860. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(851)
  31. Ivandic, K. and Soldo, B. (2009), "Nonlinear analysis of the influence of increments amounts and history load on soil response", Struct. Eng. Mech., 33(1), 67-77. https://doi.org/10.12989/sem.2009.33.1.067
  32. Jahromi, H.Z., Izzuddin, B. and Zdravkovic, L. (2007), "Partitioned analysis of nonlinear soil-structure interaction using iterative coupling", Interact. Multiscale Mech., 1(1), 33-51.
  33. Jahromi, H.Z., Izzuddin, B. and Zdravkovic, L. (2009), "A domain decomposition approach for coupled modelling of nonlinear soil-structure interaction", Comput. Method. Appl. M. Eng., 198(33), 2738-2749. https://doi.org/10.1016/j.cma.2009.03.018
  34. Kaliakin, V. and Li, J. (1995), "Insight into deficiencies associated with commonly used zero-thickness interface elements", Comput. Geotech., 17(2), 225-252. https://doi.org/10.1016/0266-352X(95)93870-O
  35. Karabatakis, D. and Hatzigogos, T. (2002), "Analysis of creep behaviour using interface elements", Comput. Geotech., 29(4), 257-277. https://doi.org/10.1016/S0266-352X(01)00033-7
  36. Karampatakis, D. and Hatzigogos, T. (1999), A model to describe creeping behavior of thin-layer element for interfaces and joints, Research report, Aristotle University of Thessaloniki.
  37. Kaschiev, M. and Mikhajlov, K. (1995), "A beam resting on a tensionless Winkler foundation", Comput. Struct., 55(2), 261-264. https://doi.org/10.1016/0045-7949(94)00445-9
  38. Kim, M. and Lade, P. (1988), "Single hardening constitutive model for frictional materials: I. Plastic potential function", Comput. Geotech., 5(4), 307-324. https://doi.org/10.1016/0266-352X(88)90009-2
  39. Kohler, R. and Hofstetter, G. (2008), "A cap model for partially saturated soils", Int. J. Numer. Anal. Met. Geomech., 32(8), 981-1004. https://doi.org/10.1002/nag.658
  40. Lade, P. and Kim, M. (1988), "Single hardening constitutive model for frictional materials II. yield critirion and plastic work contours", Comput. Geotech., 6(1), 13-29. https://doi.org/10.1016/0266-352X(88)90053-5
  41. Lee, I.K. and Harrison, H.B. (1970), "Structure and foundation interaction theory", J. Struct. Div., 96(2), 177-197.
  42. Lee, I.K. and Brown, P.T. (1972), "Structure-foundation interaction analyses", J. Struct. Div., 98(11), 2413-2431.
  43. Lee, J. and Eun, J. (2009), "Estimation of bearing capacity for multiple footings in sand", Comput. Geotech., 36(6), 1000-1008. https://doi.org/10.1016/j.compgeo.2009.03.009
  44. Lei, X. (2001), "Contact friction analysis with a simple interface element", Comput. Method. Appl. M. Eng., 190(15), 1955-1965. https://doi.org/10.1016/S0045-7825(00)00196-1
  45. Leong, E., Rahardjo, H. and Fredlund, D. (2003), "A comparative study of constitutive models for unsaturated soils", Proceedings of The 2nd Asian Conference on Unsaturated Soils, Osaka, Japan.
  46. Liu, H., Song, E. and Ling, H.I. (2006), "Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics", Mech. Res. Commun., 33(4), 515-531. https://doi.org/10.1016/j.mechrescom.2006.01.002
  47. Liyanapathirana, D.S., Carter, J. and Airey, D. (2009), "Drained bearing response of shallow foundations on structured soils", Comput. Geotech., 36(3), 493-502. https://doi.org/10.1016/j.compgeo.2008.04.004
  48. Mao, J. (2005), "A finite element approach to solve contact problems in geotechnical engineering", Int. J. Numer. Anal. Meth. Geomech., 29(5), 525-550. https://doi.org/10.1002/nag.424
  49. Masih, R. (1994), "Foundation uniform pressure and soil-structure interaction", J. Geotech. Eng., 120(11), 2064-2071. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:11(2064)
  50. Mayer, M. and Gaul, L. (2007), "Segment-to-segment contact elements for modelling joint interfaces in finite element analysis", Mech. Syst. Signal Pr., 21(2), 724-734. https://doi.org/10.1016/j.ymssp.2005.10.006
  51. McDowell, G. (2002), "A simple non-associated flow model for sand", Granul. Matter, 4(2), 65-69. https://doi.org/10.1007/s10035-002-0106-6
  52. McDowell, G. and Hau, K. (2004), "A generalised modified cam clay model for clay and sand incorporating kinematic hardening and bounding surface plasticity", Granul. Matter, 6(1), 11-16.
  53. Michalowski, R.L. and Shi, L. (1995), "Bearing capacity of footings over two-layer foundation soils", J. Geotech. Eng., 121(5), 421-428. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(421)
  54. Mozos, C.M. and Luco, J.E. (2011), "Approximate boundaries for finite-element models of static soil-foundation interaction problems", J. Eng. Mech., 137(10), 648-659. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000268
  55. Nanda, A. and Kuppusamy, T. (1992), "Elastic-plastic analysis of footings on anisotropic soils", J. Geotech. Eng., 118(3), 428-448. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:3(428)
  56. Natarajan, K. and Vidivelli, B. (2009), "Effect of column spacing on the behavior of frame-raft and soil systems", J. Appl. Sci., 9(20), 3629-3640. https://doi.org/10.3923/jas.2009.3629.3640
  57. Ng, P., Pyrah, I. and Anderson, W. (1997), "Assessment of three interface elements and modification of the interface element in CRISP90", Comput. Geotech., 21(4), 315-339. https://doi.org/10.1016/S0266-352X(97)00020-7
  58. Noorzaei, J., Viladkar, M. and Godbole, P. (1991), "Soil-structure interaction of space frame-raft-soil system: a parametric study", Comput. Struct., 40(5), 1235-1247. https://doi.org/10.1016/0045-7949(91)90394-2
  59. Noorzaei, J., Godbole, P. and Viladkar, M. (1993), "Non-linear soil-structure interaction of plane frames: a parametric study", Comput. Struct., 49(3), 561-566.
  60. Noorzaei, J., Viladkar, M. and Godbole, P. (1994), "Nonlinear soil-structure interaction in plane frames", Eng. Comput., 11(4), 303-316. https://doi.org/10.1108/02644409410799308
  61. Noorzaei, J., Viladkar, M. and Godbole, P. (1995a), "Elasto-plastic analysis for soil-structure interaction in framed structures", Comput. Struct., 55(5), 797-807. https://doi.org/10.1016/0045-7949(94)00432-3
  62. Noorzaei, J., Viladkar, M. and Godbole, P. (1995b), "Influence of strain hardening on soil-structure interaction of framed structures", Comput. Struct., 55(5), 789-795. https://doi.org/10.1016/0045-7949(94)00434-5
  63. Oh, W.T. and Vanapalli, S.K. (2008), "Modelling the stress versus settlement behavior of model footings in saturated and unsaturated sandy soils", Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, India.
  64. Onu, G. (2008), "Finite elements on generalized elastic foundation in timoshenko beam theory", J. Eng. Mech., 134(9), 763-776. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:9(763)
  65. Panayotounakos, D., Spyropoulos, C. and Prassianakis, J. (1987), "Interaction of multi-storey and multi-column rigid-jointed frames supported on an elastic foundation under static loading", Comput. Struct., 26(5), 855-869. https://doi.org/10.1016/0045-7949(87)90036-8
  66. Pandey, A., Kumar, G. and Sharma, S. (1994), "An iterative approach for the soil-structure interaction in tall buildings", Eng. Fract. Mech., 47(2), 169-176. https://doi.org/10.1016/0013-7944(94)90218-6
  67. Pavlovic', M.N. and Tsikkos, S. (1982), "Beams on quasi-Winkler foundations", Eng. Struct., 4(2), 113-118. https://doi.org/10.1016/0141-0296(82)90045-1
  68. Potts, D.M. and Zdravkovic, L. (1999), Finite element analysis in geotechnical engineering: theory, Thomas Telford Services Limited, UK.
  69. Rao, P.S., Rambabu, K. and Allam, M. (1995), "Representation of soil support in analysis of open plane frames", Comput. Struct., 56(6), 917-925. https://doi.org/10.1016/0045-7949(94)00579-R
  70. Salencon, J., Lewis, R. and Virlogeous, H. (1977), Applications of the theory of plasticity in soil mechanics, John Wiley and Sons, UK.
  71. Samadhiya, N., Viladkar, M. and Al-Obaydi, M.A. (2008), "Three-dimensional joint/interface element for rough undulating major discontinuities in rock masses", Int. J. Geomech., 8(6), 327-335. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:6(327)
  72. Schellekens, J. and De Borst, R. (2005), "On the numerical integration of interface elements", Int. J. Numer. Meth. Eng., 36(1), 43-66.
  73. Sharma, K. and Desai, C. (1992), "Analysis and implementation of thin-layer element for interfaces and joints", J. Eng. Mech., 118(12), 2442-2462. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:12(2442)
  74. Sheng, D., Wriggers, P. and Sloan, S.W. (2007), "Application of frictional contact in geotechnical engineering", Int. J. Geomech., 7(3), 176-185. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:3(176)
  75. Sheng, D., Gens, A., Fredlund, D.G. and Sloan, S.W. (2008), "Unsaturated soils: from constitutive modelling to numerical algorithms", Comput. Geotech., 35(6), 810-824. https://doi.org/10.1016/j.compgeo.2008.08.011
  76. Son, M. and Cording, E.J. (2011), "Responses of buildings with different structural types to excavation-induced ground settlements", J. Geotech. Geoenviron. Eng., 137(4), 323-333. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000448
  77. Stavridis, L. (2002), "Simplified analysis of layered soil-structure interaction", J. Struct. Eng., 128(2), 224-230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:2(224)
  78. Swamy, H.M.R., Prabakhara, D. and Bhavikatti, S. (2011a), "Relevance of interface elements in soil structure interaction analysis of three dimensional and multiscale structure on raft foundation", Electron. J. Geotech. Eng., 16.
  79. Swamy, H.M.R., Krishnamoorthy, A., Prabakhara, D. and Bhavikatti, S. (2011b), "Evaluation of the influence of interface elements for structure- isolated footing- soil interaction analysis", Interact. Multiscale Mech., 4(1), 65-83. https://doi.org/10.12989/imm.2011.4.1.065
  80. Swan, C.C. and Seo, Y. (2000), A smooth, three-surface elasto-plastic cap model: Rate formulation, integration algorithm and tangent operators, Research report, University of Iowa.
  81. Teodoru, I.B. (2009), Beams on elastic foundation. The simplified continuum approach, Bulletin of the Polytechnic Institute of Jassy, Constructions, Architechture Section, 55.
  82. Teodoru, I.B. and Musat, V. (2010), "The modified vlasov foundation model: An attractive approach for beams resting on elastic supports", Electron. J. Geotech. Eng., 15, 1-13.
  83. Torkamani, M. (1990), "Elasto-plastic analysis for cyclic loading and tresca yield condition", Comput. Mech., 6(5), 407-422. https://doi.org/10.1007/BF00350421
  84. Vallabhan, C.V.G. and Das, Y. (1991), "Modified vlasov model for beams on elastic foundations", J. Geotech. Eng., 117(6), 956-966. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(956)
  85. Valliappan, S. (1981), Continuum mechanics fundamentals, A.A. Balkema company, Rotterdam, Netherlands.
  86. Viladkar, M., Godbole, P. and Noorzaei, J. (1991), "Soil-structure interaction in plane frames using coupled finite-infinite elements", Comput. Struct., 39(5), 535-546. https://doi.org/10.1016/0045-7949(91)90062-Q
  87. Viladkar, M., Godbole, P. and Noorzaei, J. (1992), "Space frame-raft-soil interaction including effect of slab stiffness", Comput. Struct., 43(1), 93-106. https://doi.org/10.1016/0045-7949(92)90083-C
  88. Viladkar, M., Noorzaei, J. and Godbole, P. (1994a), "Behaviour of infinite elements in an elasto-plastic domain", Comput. Struct., 51(4), 337-342. https://doi.org/10.1016/0045-7949(94)90319-0
  89. Viladkar, M., Godbole, P. and Noorzaei, J. (1994b), "Modelling of interface for soil-structure interaction studies", Comput. Struct., 52(4), 765-779. https://doi.org/10.1016/0045-7949(94)90358-1
  90. Viladkar, M., Noorzaei, J. and Godbole, P. (1994c), "Interactive analysis of a space frame-raft-soil system considering soil nonlinearity", Comput. Struct., 51(4), 343-356. https://doi.org/10.1016/0045-7949(94)90320-4
  91. Viladkar, M., Noorzaei, J. and Godbole, P. (1995), "Convenient forms of yield criteria in elasto-plastic analysis of geological materials", Comput. Struct., 54(2), 327-337. https://doi.org/10.1016/0045-7949(94)E0199-C
  92. Wang, X. and Wang, L. (2006), "Continuous interface elements subject to large shear deformations", Int. J. Geomech., 6(2), 97-107. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:2(97)
  93. Weigel, T.A., Ott, K.J. and Hagerty, D.J. (1989), "Load redistribution in frame with settling footings", J. Comput. Civil Eng., 3(1), 75-92. https://doi.org/10.1061/(ASCE)0887-3801(1989)3:1(75)
  94. Wood, L. (1978), "RAFTS: a program for the analysis of soil-structure interaction", Adv. Eng. Softw., 1(1), 11-17. https://doi.org/10.1016/0141-1195(78)90017-7
  95. Yuan, Z. and Chua, K.M. (1992), "Exact formulation of axisymmetric-interface-element stiffness matrix", J. Geotech. Eng., 118(8), 1264-1271. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:8(1264)
  96. Zdravkovic, L., Potts, D. and Jackson, C. (2003), "Numerical study of the effect of preloading on undrained bearing capacity", Int. J. Geomech., 3(1), 1-10. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(1)
  97. Zheng, H., Liu, D., Lee, C. and Yue, Z. (2004), "A sophisticated node-pair model for interface problems", Comput. Geotech., 31(2), 137-153. https://doi.org/10.1016/j.compgeo.2003.11.004
  98. Zhou, A. and Lu, T. (2009), "Elasto-plastic constitutive model of soil-structure interface in consideration of strain softening and dilation", Acta Mech. Solida Sin., 22(2), 171-179. https://doi.org/10.1016/S0894-9166(09)60102-6
  99. Zhu, M. (2004), "Bearing capacity of strip footings on two-layer clay soil by finite element method", Proceedings of ABAQUS Users' Conference, Boston, Massachusetts.
  100. Zhu, M. and Michalowski, R.L. (2005), "Bearing capacity of rectangular footings on two-layer clay", Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan.

Cited by

  1. Soil-Framed Structure Interaction Analysis - A New Interface Element vol.12, pp.2, 2015, https://doi.org/10.1590/1679-78251130
  2. Investigation of ship collision with floating pier structures vol.7, pp.1, 2014, https://doi.org/10.12989/imm.2014.7.1.563
  3. Investigation of ship collision with floating pier structures vol.3, pp.3, 2014, https://doi.org/10.12989/csm.2014.3.3.319
  4. Finite Element Modeling of Soil Structure Interaction System with Interface: A Review vol.28, pp.5, 2013, https://doi.org/10.1007/s11831-020-09505-2