• 제목/요약/키워드: supersonic combustion

검색결과 153건 처리시간 0.317초

Model Scramjet Engine Design for Ground Test (지상시험용 모델 스크램제트 엔진의 설계)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제11권5호
    • /
    • pp.1-13
    • /
    • 2007
  • Scramjet engine is one of the most promising propulsion systems for future transport. For the ground test with T4 shock tunnel, model scramjet engine is designed. Design flight Mach number is 7.6 and flight altitude is 30km. Engine intake is designed by Levenberg-Marquardt optimization method and Korkegi relation. Furthermore, cowl cut out region is installed by the rule of Kantrowitz limit. Inside the combustor, cavity type flame holder is installed. Cavity is designed by Rayleigh line relation and PSR model. Numerical analysis is performed for the design confirm.

Potential of MHD in Improving the Performance of and Generating Power in Scramjets (MHD의 스크램제트 성능 개선과 전력 생산 잠재력)

  • Parent, Bernard;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.310-313
    • /
    • 2008
  • Magnetohydrodynamics (MHD) devices have received considerable attention in recent years as a means to either improve the propulsive characteristics of hypersonic cruise missiles or as a means to generate power at low cost in drag and weight aboard scramjet powered vehicles. Based on more complete physical models than previously used, it is here argued that the use of MHD is not valuable in improving the performance of hypersonic propulsion systems through prevention of boundary layer separation or power bypass. This is due to the inevitable high amount of Joule heating accompanying MHD flow control having considerable undesired adverse effects on the engine performance. On the other hand, preliminary estimates indicate that MHD is likely to succeed in generating high amounts of power with little additional drag to feed megawatt-class energy weapons on-board scramjet engines.

  • PDF

Performance Characteristics Analysis of a Three Dimensional Asymmetric Pintle Nozzle Induced by Connection-Tube Angle and Pintle Stroke Position (비대칭 3차원 핀틀 노즐의 연결관 각도와 핀틀 위치에 대한 성능 특성 해석)

  • Lee, KangMin;Hong, JiSeok;Sung, Hong-Gye;Heo, Junyoung;Jin, Jungkun;Ha, DongSung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.383-387
    • /
    • 2017
  • A three dimensional numerical analysis has been conducted to analyze the effects of a pipe angle, connecting a combustion chamber and a pintle nozzle, and pintle position on pintle nozzle performance. The compressibility correction of $k-{\omega}$ SST turbulent model was implemented to precisely predict the characteristics of complex flow structures inside a supersonic pintle nozzle. Due to an 3-D asymmetric pintle nozzle configuration, complex helical flow streamlines and large flow separations were observed, which resulting in significant nozzle performance losses. As the angle of connection-tube decreases, the coefficient of performance increases and Since the flow structures are evidently changed to the pintle stroke position, the performance characteristics was analyzed.

  • PDF