• Title/Summary/Keyword: superplastic

Search Result 108, Processing Time 0.022 seconds

Low-Temperature Superplastic Deformation Behavior of Fine-Grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si Alloy (미세 결정립 Ti-6Al-2Sn-4Zr-2Mo-0.1Si 합금의 저온 초소성 변형 거동)

  • Park, C.H.;Lee, B.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.544-549
    • /
    • 2009
  • This study aimed to elucidate the deformation mechanism during low-temperature superplasticity of fine-grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy in the context of constitutive equation. For this purpose, initial coarse equiaxed microstructure was refined to $2.2{\mu}m$ via dynamic globularization. Globularized microstructure exhibited large superplastic elongations(434-826%) at temperatures of $650-750^{\circ}C$ and strain rate of $10^{-4}s^{-1}$. It was found that the main deformation mechanism of fine-grained material was grain boundary sliding accommodated by dislocation motion with both stress exponent (n) and grain size exponent (p) values of 2. When the alpha grain size, not sub-grain size, was considered to be an effective grain size, the apparent activation energy for low-temperature superplasticity of the present alloy(169kJ/mol) was closed to that of Ti-6Al-4V alloy(160kJ/mol).

Effects of α2/β Volume Fraction on the Superplastic Deformation (2 상 Ti3Al-xNb 계 금속간 화합물들의 초소성 특성에 미치는 상분율의 영향)

  • 김지식
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.447-456
    • /
    • 2002
  • A study has been made to investigate the boundary sliding and its accommodation mode with respect to the variation of $\alpha$$_2$/$eta$ volume fraction during superplastic deformation of two-phase Ti$_3$Al-xNb intermetallics. Step strain rate and load relaxation tests have been performed at 950, 970 and 99$0^{\circ}C$ to obtain the flow stress curves and to analyze the deformation characteristics by the theory of inelastic deformation. The results show that the grain matrix deformation and boundary sliding of the three intermetallics containing 21, 50 and 77% in $eta$ volume fractions are well described by the plastic deformation and viscous flow equations. Due to the equal accommodation of both $a^2$ and $\beta$ phases, the accommodation modes for fine-grained materials are in good agreement with the iso-strain rate models. The sliding resistance analyzed for the different boundaries is the lowest in the $\alpha$$_2$/$\alpha$$_2$ boundary, and increases in the order of $\alpha$$_2$/$\alpha$$_2$<< $\alpha$$_2$/$\beta$ = $\beta$/$\beta$, which plays an important role in controlling the superplasticity of the alloys with the various $\alpha$$_2$/$\beta$ phase ratio.

Molecular Theory of Superplastic Deformation (초소성변형의 분자론)

  • Chang Hong Kim;Taikyue Lee
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.217-236
    • /
    • 1979
  • The author's theory for plastic deformation was applied to superplastic alloys (Zn-Al eutectoid, Al-Cu, Pb-Sn, Sn-Bi, Mg-Al eutectics). The plastic deformation of the superplastic alloys could be described by two Maxwell models connected in parallel which represent two grain boundary flow units. The flow units are characterized by the two parameters $X_{gj}/{\alpha}_{gj}\;and\;{\beta}_{gj}$ (j=l or 2, g signifies the grain boundary) the values of which were obtained by applying our flow equation [Eq. (5)] to experiment. We confirmed that our flow equation describes the superplasticity very well. The curve of strain rate sensitivity m (=${\partial}\;In\;f/{\partial}\;In\;\dot{s})\;vs.\;-In\dot{s}$, where f and s are stress and strain rate, respectively, showed two peaks corresponding to flow unit gl and g2, the separation of the two peaks is determined by the difference between ${\beta}_{g1}\;and\;{\beta}_{g2}$. The condition of superplasticity is also determined by ${\beta}_{gj}$, which satisfies $\dot{s}_{mj}{\leqslant}1.53}{\beta}_{gj}$ [Eq.(13)], where $\dot{s}_{mj}$ is the s of the jth unit at the peak. The grain size dependence of ${\beta}_{gj}$ is described by $ln({\beta}_{gj})^{-1}$=alnx+b [Eq. (16)], where x is the grain size, and a and b are constants. The activation enthalpy for each flow unit, ${\Delta}H_{gj}^{\neq}$ was also determined from the temperature dependence of ${\beta}_{gj}$ which is proportional to the relaxation time of the j th unit. Since the superplasticity is determined by Eq. (13), and since ${\beta}_{gj}$ and ${\Delta}H_{gj}^{\neq}$ are related, we obtained the conclusion that superplasticity occurs in the system having small ${\Delta}H_{gj}^{\neq}$ values. The Aej values were equal to the activation enthalpies of grain boundary self-diffusion of the component atoms of the alloys, this accords with our proposed flow mechanism. The ${\Delta}H_{gj}^{\neq}$ value increases with grain size as expected from Eq. (16).

  • PDF

Effects of Mg and Cu Additions on Superplastic Behavior in MA Aluminum Alloys

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.435-439
    • /
    • 2018
  • MA Al alloys are examined to determine the effects of alloying of Mg and Cu and rolling on tensile deformation behavior at 748 K over a wide strain rate range($10^{-4}-10^3/s$). A powder metallurgy aluminum alloy produced from mechanically alloyed pure Al powder exhibits only a small elongation-to-failure(${\varepsilon}_f$ < ~50%) in high temperature(748 K) tensile deformation at high strain rates(${\acute{\varepsilon}}=1-10^2/s$). ${\varepsilon}_f$ in MA Al-0.5~4.0Mg alloys increases slightly with Mg content(${\varepsilon}_f={\sim}140%$ at 4 mass%). Combined addition of Mg and Cu(MA Al-1.5%Mg-4.0%Cu) is very effective for the occurrence of superplasticity(${\varepsilon}_f$ > 500%). Warm-rolling(at 393-492 K) tends to raise ${\varepsilon}_f$. Lowering the rolling-temperature is effective for increasing the ductility. The effect is rather weak in MA pure Al and MA Al-Mg alloys, but much larger in the MA Al-1.5%Mg-4.0%Cu alloy. Additions of Mg and Cu and warm-rolling of the alloy cause a remarkable reduction in the logarithm of the peak flow stress at low strain rates (${\acute{\varepsilon}}$< ~1/s) and sharpening of microstructure and smoothening of grain boundaries. Additions of Mg and Cu make the strain rate sensitivity(the m value) larger at high strain rates, and the warm-rolling may make the grain boundary sliding easier with less cavitation. Grain boundary facets are observed on the fracture surface when ${\varepsilon}_f$ is large, indicating the operation of grain boundary sliding to a large extent during superplastic deformation.

Superplastic Properties of Al-Mg-Cu-Mn Alloys (Al-Mg-Cu-Mn 합금의 초소성 특성)

  • Park, Jong-U;Kim, Hui-Su;Mun, In-Gi;Ha, Gi-Yun;Lee, Deok-Yeol
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.132-139
    • /
    • 1995
  • Tnermomechanical treatment consisting of homogenizing, hot and warm rolling were introduced to Al-MgCu-Mn alloys for obtaining superplasticity. The factors affecting the superplasticity of the alloys were investigated by optical and transmission electron microscopy. Large particles which had not been decomposed during homogenizing treatments remained stable in the hot and warm rolling processes. These particles were a source of cavitation and poor elongation in superplastic deformation. On the other hand, fine precipitates were produced during thermomechanical processing, and resulted in improvement of superplasticity by stabilizing microstructure. Two-step homogenizing and air cooling process was more effective than onestep homogenizing and furance cooling process in removing microsegregations and producing fine particles.

  • PDF

Effects of Grain Size on High Temperature Deformation Behavior of Sc added Al-Mg Alloy (Sc첨가한 Al-Mg 합금의 고온변형 거동에 미치는 결정립 크기의 영향)

  • Woo, K.D.;Kim, S.W.;Kim, H.S.;Yang, C.H.;Park, H.C.;MIURA, Y.;Park, K.T.
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.701-705
    • /
    • 2002
  • High temperature tensile test has been performed at $450^{\circ}C$ at different strain rate with various grain size due to different reduction rate of Al-4wt%Mg-0.4wt%Sc alloy which is known to be one of useful superplastic alloys. The grain size of Al-4wt%Mg-0.4wt%Sc alloy is $67~100\mu\textrm{m}$ which is courser than that of the alloy which is commonly used as the superplastic material. The total elongation of the Al-4wt%Mg-0.4wt%Sc alloy is strongly dependent on the average grain size, and is a linear function of the inverse average grain size for the present alloy.

High temperature deformation characteristics ${YBa_2}{Cu_3}{O_{7-x}}$ superconductor (${YBa_2}{Cu_3}{O_{7-x}}$초전도체의 고온변형특성)

  • Kim, Byeong-Cheol;Jang, Ho-Jeong;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.828-836
    • /
    • 1994
  • In order to investigate the high temperature deformation characteristics in YBaiCu307-, oxide superconductor, the compression test was performed at temperatures from $890^{\circ}C$ to $930^{\circ}C$ at initial strain rate between $1.0 x 10^{-5}s^{-1}\; and \; 1.0^{-4}s^{-1}$. As the temperature increased and the initial strain rate decreased, the flow stress decreased. The strain rate sensitivity exponent measured as 0.41-0.46, supporting occurence of a superplastic deformation. The activation energy for superplastic deformation was calculated as 500-580KJ/mol, which decreased with increasing Ag content. Microstructure of the superplastically-deformed specimens showed that a grain growth occurred during deformation, and it appeared to be considerable when Ag content increased, but most grains still remained equiaxed after deformation. In this study, the deformation mechanism of YBCO superconductor was the grain boundary sliding with the diffusional accommodation and the contribution of the gram boundary sliding to the total strain was estimated to be 65%.

  • PDF

Low-temperature/high-strain rate superplasticity of two-phase titanium alloys (2상 타이타늄 합금의 저온/고속 초소성)

  • Part, C.H.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.76-79
    • /
    • 2009
  • The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of $\alpha/\beta\;\ll\;\alpha/\alpha\;\approx\;\beta/\beta$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.

  • PDF

Enhanced Superplasticity of Two-phase Titanium Alloys by Microstructure Control (2상 타이타늄 합금의 미세조직 제어를 통한 초소성 특성 향상)

  • Park, C.H.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of ${\alpha}/{\beta}\;\ll\;{\alpha}/{\alpha}\;{\approx}\;{\beta}/{\beta}$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.

Nanostructured Bulk Ceramics (Part IV. Polymer Precursor Derived Nanoceramics)

  • Han, Young-Hwan;Mukherjee, Amiya K.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.205-209
    • /
    • 2010
  • In the last (fourth) section, the discussion will entail a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of $1400^{\circ}C$. This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method.