• Title/Summary/Keyword: superoxide ($(O_2-^')$

Search Result 632, Processing Time 0.033 seconds

Physiological and Biochemical Responses to Ozone Toxicity in Five Species of genus Quercus Seedlings (참나무속 5종의 오존 독성에 대한 생리생화학적 반응)

  • Kim, Du-Hyun;Han, Sim-Hee;Ku, Ja-Jung;Lee, Kab-Yeon;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.2
    • /
    • pp.47-57
    • /
    • 2008
  • Physiological and biochemical changes of five species of genus Quercus exposed to ozone fumigation were investigated to assess their tolerance against ozone toxicity. At the end of 150 ppb ozone fumigation, chlorophyll contents, photosynthetic characteristics, malondialdehyde(MDA) and antioxidative enzyme activities were measured in the leaves of five Quercus species(Quercus acutissima, Q. aliena, Q. palustris, Q. serrata, and Q. variabilis). Chlorophyll and carotenoid contents, net photosynthesis and carboxylation efficiency decreased after ozone treatment, indicating that $O_3$-exposed plants underwent physiological inhibition. The reduction rate of total chlorophyll contents and carboxylation efficiency were respectively 15% and 34% for Q. aliena and 38% and 62% for Q. variabilis. The amount of MDA increased with the highest increase rate of 140% in Q. acutissima which also showed the highest increase rate(60%) of superoxide dismutase(SOD). Ascorbate peroxidase(APX) activity increased in Q. variabilis, Q. serrata and Q. acutissima by ozone treatment. Based on our results, ozone tolerance of the five Quercus species was ranked as Q. aliena>Q. palustris>Q. serrata>Q. variabilis>Q. acutissima. We concluded that chlorophyll contents, photosynthesis, MDA content and antioxidative enzymes were the important physiological markers for tolerance against ozone stress, which were closely related with one another.

Antioxidant and Antimicrobial Activities of Extracts from Sarcodon aspratus (능이버섯(Sarcodon aspratus) 추출물의 항산화성과 항균성)

  • Yoon, Kyung-Young;Lee, Sook-Hee;Shin, Seung-Ryeul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.967-972
    • /
    • 2006
  • The antioxidative and antimicrobial activities were determined on the mushroom (Sarcodon aspratus) extracts in order to find out new food functional components. The antioxidative activities of water and ethanol extracts from the Sarcodon aspratus were measured by peroxide values (POV), electron-donating ability (EDA) using 1,1-diphenyl-2-picryl hydroxyl (DPPH), nitrite-scavenging ability and superoxide dismutase-like activity (SODA) by pyrogallol. The antioxidative activity of the ethanol extract measured by POV was higher than those of the water extract, BHT, and ${\alpha}-tocopherol$. The EDA of the water extract and ethanol extract using DPPH showed the highest values of 76.94% and 73.06%, respectively. The nitrite-scavenging abilities (pH 1.2, 1,000 ppm) of the water and ethanol extracts were 72.61% and 62.69%, respectively, and the nitrite-scavenging ability of the water extract was higher than that of the ethanol extract in all pH values. The SODA of the ethanol extract was higher than that of the water extract. The Sarcodon aspratus extracts had antimicrobial effects on Listeria monocytogenes and Staphylococcus aureus.

Antioxidative Effects of White Ginseng and Red Ginseng on Liver of High Fat Diet-treated Mice (고지방식으로 생육한 생쥐간에서 백삼과 홍삼 추출물의 항산화 효과)

  • Jeon, Bo-Hyun;Seong, Geum-Su;Chun, Seung-Gi;Sung, Jong-Hwan;Chang, Che-Chul
    • Journal of Ginseng Research
    • /
    • v.29 no.3
    • /
    • pp.138-144
    • /
    • 2005
  • This study was to examine antioxidative effects of ginseng extracts on liver of high fat diet-treated mice. ICR male mice were given high fat diet with red ginseng or white ginseng extracts (500, 1500, 3000 mg/kg/day, orally) for 4 weeks. We also Investigated the relationship between lipid peroxidation and ginseng extracts on the oxidative stress. We measured the levels of malondialdehyde (MDA, a marker of lipid peroxidation), hydrogen peroxide, superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione (GSH) in liver tissue. The activities of SOD was generally low in all ginseng extract groups. But the activity of GPx was high in all ginseng extract groups. The hydrogen peroxide contents were similar in almost all groups. The level of GSH was higher in all ginseng extract group in high fat diet (FD) group. The levels of MDA (the end product of lipid peroxidation) were lower in all ginseng extract groups than in FD group. These results that the antioxidant effects of red ginseng and white ginseng extracts prevent oxidative damage by antioxidant effects involving SOD, GPx and increasing the ability of the body to synthesize endogenous antioxidants. It was concluded that ginseng can protect against oxidative stress by high fat diet through its antioxidant properties.

Anti-oxidative and Anti-inflammatory Effects of Genistein in BALB/c Mice Injected with LPS (LPS 주사한 BALB/c 마우스에서 Genistein의 산화적 스트레스 억제효과 및 항염증 효과)

  • Cho, Hye-Yeon;Noh, Kyung-Hee;Cho, Mi-Kyung;Jang, Ji-Hyun;Lee, Mi-Ok;Kim, So-Hee;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.9
    • /
    • pp.1126-1135
    • /
    • 2008
  • This study was carried out to investigate the anti-oxidative and anti-inflammatory actions of genistein in BALB/c mice injected with lopopolysaccharide (LPS), called endotoxin. Mice (10 weeks of age) weighing approximately 20 g were divided into 4 groups. Endotoxin shock was induced by intraperitoneal injection of LPS (100 mg/kg BW). LPS and genistein+LPS groups were injected with LPS 30 min after phosphate buffered saline (PBS) solution and genistein (200 mg/kg BW) injections, respectively. Genistein group was injected with genistein, followed by PBS, while PBS group received two injections of PBS. Superoxide anion generation of peritoneal macrophage cells was significantly (p<0.05) lower in the genistein+LPS group than in the LPS injection group at 8 h after intraperitoneal injection, while SOD activity was significantly higher in genistien+LPS group than LPS group. Tumor necrosis factor-$\alpha$ levels of plasma were significant lower (p<0.05) in the genistein+LPS injection group than LPS group at 8 h after intraperitoneal injection. Plasma TBARS was lower in genistein+LPS group than LPS group, while hepatic TBARS were not different among groups. Hepatic glutathione concentrations and antioxidant enzyme activities were ignificantly higher in the genistein+LPS group than in the LPS group at 1 h and 8 h after intraperitoneal injection. Nuclear factor-kappa B (NF-${\kappa}B$) transactivation was significantly (p<0.05) inhibited in LPS group. These results demonstrate genistein may ameliorate inflammatory diseases through inhibition of NF-${\kappa}B$ transactivation and oxidative stress, which may be mediated partially by anti-oxidative effect of genistein.

Antioxidant and Neuroprotective Effects of Green Tea Seed Shell Ethanol Extracts (녹차씨껍질 에탄올 추출물의 항산화 활성 및 신경세포 보호 효과)

  • Sung, Nak-Yun;Song, Hayeon;Ahn, Dong-Hyun;Yoo, Yung-Choon;Byun, Eui-Baek;Jang, Beom-Su;Park, Chulhwan;Park, Won-Jong;Byun, Eui-Hong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.958-965
    • /
    • 2016
  • The objective of this study was to evaluate the antioxidant activity of green tea seed shell as an industrial byproduct. Green tea seed shell extract (GTSSE) was obtained by ethanol extraction, and the yield was $1.4{\pm}0.22%$. The radical scavenging activities [1,1-diphenyl-picrylhydrazyl and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)], xanthine oxidase inhibition activity, and reducing power of GTSSE dose-dependently increased. To estimate the neuroprotective effect of GTSSE, viability was tested in HT22 mouse hippocampal cells. GTSSE treatment induced cytotoxicity at a concentration higher than $100{\mu}g/mL$ but not at a concentration lower than $50{\mu}g/mL$. Using this optimal concentration range, GTSSE treatment significantly increased cell viability in $H_2O_2$-treated HT22 cells. Further, GTSSE treatment increased superoxide dismutase activity and decreased the malonaldehyde level, a product of lipid peroxidation, in HT22 cells. Therefore, these results indicate that green tea seed shell extract may be useful for the development of antioxidant materials and have potential activity to prevent and treat neuro-degenerative diseases such as Alzheimer's disease.

Effects of Sea Tangle (Laminaria japonica) and Fucoidan Components on the Attack of Oxygen Radicals in Kidney (신장의 활성산소 공격에 대한 다시마(Laminaria japonica)와 후코이단 성분의 영향)

  • CHOI Jin-Ho;KIM Dae-Ik;PARK Soo-Hyun;KIM Dong-Woo;KOO Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.758-763
    • /
    • 1999
  • The protective effects of sea tangle (Laminaria japonica) extract and fucoidan components on the attack of oxygen radicals in kidney were studied, Sprague-Dawley (SD) male rats (210 $\pm$ 5 g) were with fed experimental diets of Dasi-Ex group (sea tangle extract powder of $4.0\%$ added to control diet), Euco-I, II and III groups (fucoidan powder of 1, 2 and $3\%$, respectively, added to Dasi-Ex group) for 45 days, Hydroxyl radical formations were significantly decreased ($10\~15\%$ and $15\~30\%$) in mitochondria and microsomes of Dasi-Ex and Fuco-I, II, III groups compared with control group. Hydrogen peroxide formations were also significantly decreased ($10\~15\%$) in microsomes of Dasi-Ex and Fuco-I, II, III groups compared with control group. Significant differences in mitochondrial basal oxygen radical (BOR) and microsomal induced oxygen radical (IOR) formations of Dasi-Ex and Fuco-I groups could not be obtained, but mitochondrial BOR and microsomal IOR formations were significantly decreased ($12\~15\%$ and $13\~14\%$) in Fuco-II and III groups compared with control group. BOR formations were significantly decreased ($12\~25\%$) in microsomes of Dasi-Ex and Fuco-I, II, III groups, and IOR formations were also significantly decreased ($10\~15\%$) in mitochondria of Fuco-I, II, III groups compared with control group, Significant differences in mitochondrial Mn-SOD activities of Dasi-Ex group could not be obtained, but mitochondrial Mn-SOD activities were dose-dependently increased by $8\%,\;16\%$ and $36\%$ in Fuco-I, II and III groups compared with control group, Mn-SOD activities an microsome were significantly increased about $20\%$ in Dasi-Ex group, while they were remarkably increased about $40\%$ in Fuco-I, II and III groups compared with control group. lipid peroxide contents were significantly decreased about $15\%$ and $15\~25\%$ in mitochondria and microsomes of Fuco-II and III groups. Membrane fluidities resulted in marked increases ($20\~35\%$ and $17\~24\%$) in mitochondria and microsomes of Dasi-Ex and Fuco-I, II and III groups. These results suggest that administrations of fucoidan added to sea tangle may play a pivotal role in attenuating attack of oxygen radicals in kidney.

  • PDF

Effects of Sea Tangle (Laminaria japonica) and Fucoidan Components on Anti-aging Action (노화억제작용에 미치는 다시마(Laminaria japonica)와 후코이단 성분의 영향)

  • 최진호;김대익;박수현;김동우;이종수;유종현;정유섭
    • Journal of Life Science
    • /
    • v.9 no.4
    • /
    • pp.439-452
    • /
    • 1999
  • This study was designed to investigate the effects of sea tangle (Laminaria japonica) extract and fucoidan components on anti-aging action. Sprague-Dawley(SD) male rats (210$\pm$5g) were fed experimental diets Dasi-Ex group: sea tangle extract powder of 4.0% added to control diet; Fuco-I, II and III groups: funcoidan powder of 1, 2 and 3% added to Dasi-Ex group for 45 days. Hydroxyl radical (.OH) formations were significantly inhibited (10-20% and 25-30%) in serum and brain mitochondria of Dasi-Ex and Fuco-I, II and III groups compared with control group. Significant differences in .OH formations of brain mitochondria in Dasi-Ex and Fuco-I groups could not be obtained, but.OH formations of brain microsomes resulted in a significant decrease (15-20%) in Fuco-II and III groups compared with control group. Basal oxygen radical (BOR) formations were significantly decreased about 10% and 13-15% in brain mitochondria of Dasi-Ex and Fuco-I group, and Fuco-II, III groups, and also decreased about 10% and 15-20% in brain microsomes of Dasi-Ex and Fuco-I groups, and Fuco-II, III groups. LPO levels of brain mitochondria and microsomes were significantly inhibited about 10% in Dasi-Ex and Fuco-I, II groups and 15% in Fuco-III groups. Oxidized proteins (>C=O) were significantly inhibited about 10% in serum of Dasi-Ex and Fuco-I, II, III groups and brain mitochondria of Dasi-Ex group, while remarkably inhibited (30~35%) in brain mitochondria of Fuco-I, II and III groups. Nitric oxide (NO) levels were significantly inhibited (12~15%) in serum of Fuco-I, II and III groups, but there no significant difference in serum NO levels of Dasi-Ex group. Superoxide dismutase (SOD) activities were remarkably increased (30~ 60%) in serum of Fuco-I, II and III groups, but there were no significant differences in SOD activities in serum of Dasi-Ex group. Catalase (CAT) activities were significantly increased about 20% in serum of Dasi-Ex and Fuco-I, II, III groups. Mn-SOD activities in brain mitochondria were significantly increased about 17% in Dasi-Ex group, while remarkably increased 26~36% in Fuco-I, II, III groups. Cu,Zn-SOD activities in brain cytosol were dose-dependently of fucoidan increased 10%, 12% and 18%, respectively, compared with control group. These results suggest that anti-aging effects of fucoidan may play a pivotal role in attenuating a various age-related changes such as chronic degenerative disease and senile dementia.

  • PDF

Mutagenicities of Carbonyl Compounds Derived from Maillard Reaction and their Desmutagenicity Mechanisms (Maillard 반응 유래(由來) 저분자 카르보닐화합물의 돌연변이원성과 그 억제기구)

  • Kim, Seon-Bong;Yeom, Dong-Min;Do, Jeong-Ryong;Yoon, Hyeung-Sik;Byun, Han-Seok;Kim, In-Soo;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.435-440
    • /
    • 1989
  • The present study was attempted to investigate the mutagenicities of carbonyl compounds(methyl glyoxal, glyoxal, diacetyl, dihydroxyacetone, glycolaldehyde, glyceraldehyde and furfural) derived from Maillard reaction toward Salmonella typhimurium TA 100(base-substitution mutant) without metabolic activation . And for further Investigation of mutagenicity mechanism including desmutagenicity, active oxygen scavengers (cysteine, ${\alpha}-tocopherol$, tris (hydroxymethyl) aminomethane, catalase, ascorbic acid) and reducing agents (glutathione, sodium bisulfite) were also used. Among carbonyl compounds tested, methyl glyoxal, glyoxal, dihydroxyacetone, glycolaldehyde and glyceraldehyde exhibited mutagenicities, and methyl glyoxal showed the strongest mutagenic activity. On the other hand , the mutagenicities of carbonyl compounds were significantly suppressed by cysteine, tris (hydroxymethyl) aminomethane, glutathione and sodium bisulfite. Also, these active oxygen scavengers and reducing agents alone did not show mutagenicity in the present study.

  • PDF

Ginsenoside Rg1 suppresses early stage of adipocyte development via activation of C/EBP homologous protein-10 in 3T3-L1 and attenuates fat accumulation in high fat diet-induced obese zebrafish

  • Koh, Eun-Jeong;Kim, Kui-Jin;Choi, Jia;Jeon, Hui Jeon;Seo, Min-Jung;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • Background: Ginsenoside Rg1 is a class of steroid glycoside and triterpene saponin in Panax ginseng. Many studies suggest that Rg1 suppresses adipocyte differentiation in 3T3-L1. However, the detail molecular mechanism of Rg1 on adipogenesis in 3T3-L1 is still not fully understood. Methods: 3T3-L1 preadipocyte was used to evaluate the effect of Rg1 on adipocyte development in the differentiation in a stage-dependent manner in vitro. Oil Red O staining and Nile red staining were conducted to measure intracellular lipid accumulation and superoxide production, respectively. We analyzed the protein expression using Western blot in vitro. The zebrafish model was used to investigate whether Rg1 suppresses the early stage of fat accumulation in vivo. Results: Rg1 decreased lipid accumulation in early-stage differentiation of 3T3-L1 compared with intermediate and later stages of adipocyte differentiation. Rg1 dramatically increased CAAT/enhancer binding protein (C/EBP) homologous protein-10 (CHOP10) and subsequently reduced the $C/EBP{\beta}$ transcriptional activity that prohibited the initiation of adipogenic marker expression as well as triglyceride synthase. Rg1 decreased the expression of extracellular signal-regulated kinase 1/2 and glycogen synthase kinase $3{\beta}$, which are also essential for stimulating the expression of $CEBP{\beta}$. Rg1 also reduced reactive oxygen species production because of the downregulated protein level of nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase 4 (NOX4). While Rg1 increased the endogenous antioxidant enzymes, it also dramatically decreased the accumulation of lipid and triglyceride in high fat diet-induced obese zebrafish. Conclusion: We demonstrated that Rg1 suppresses early-stage differentiation via the activation of CHOP10 and attenuates fat accumulation in vivo. These results indicate that Rg1 might have the potential to reduce body fat accumulation in the early stage of obesity.

Protective Mechanism of Flavonoids Isolated from Rhus verniciflua on the Biliary Liver Fibrosis in Rat (간섬유화 동물에서 옻나무 목부로부터 분리한 flavonoids의 독성 경감기전)

  • 최종원;박희준;이경태;박건영;한갑이;정민화
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.332-339
    • /
    • 2002
  • The pathogenesis of cholestatic liver injury as well as the modulation of hepatic fibrogenesis is causally associated with involvement of reactive oxygen species and free radical reactions. In this study, we investigated whether flavonoids (fustin, sulfuretin) which were isolated from Rhus verniciflua Stokes (RCS) have antioxidant and antihepatotoxicity effect under the biliary liver fibrosis condition. After surgery (control) and posttreated RCS methanol extract (250mg/kg), ethyl acetate extract (250mg/kg) and flavonoids were administered p.o. 10mg/kg/day in two weeks for control groups. The concentration of clinical parameters and product of hepatic lipid peroxidation and the hydroxyproline content were significantly increased in liver fibrosis developed rats. Among the clinical parameters of serum, value of ALT, AST, SDH, total bilirubin and ${\gamma}$ -GT in posttreated RCS components-group showed significantly lower than in control-group. The content of hydroxyproline in posttreated RCS components-group showed lower than in control group and then the value of MDA in posttreated RCS components-group was also significantly reduced to 40~60% of that in control group. The hepatic xanthine oxidase and aldehyde oxidate activities were posttreated RCS components-group showed significantly lower than in control-group. The hepatic SOD and glutathione peroxidase activities were posttreated RCS components-group showed significantly higher than in control-group. Hence we concluded that active components of fustin and sulfuretin which were isolated from R. verniciflua Stokes were hepatoprotective effect in experimental liver fibrosis.