• Title/Summary/Keyword: superheater system

Search Result 36, Processing Time 0.024 seconds

Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler (접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구)

  • Park, Ho-Young;Sea, Sang-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

A Study of Superheater Temperature Control on an Once Through Boiler in Thermal Power Plant (화력발전소 관류보일러의 과열기 온도제어에 관한 연구)

  • Lee, Jo-Hyun;Jeong, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2022-2027
    • /
    • 2009
  • An supercritical once through boiler system has been used in the korea standard-type thermal power plant. It is critical in boiler operation that superheater temperature should be controlled within the specified limit. In this paper, control logic scheme is suggested for superheater temperature in once through boiler. Finally the simulation result using process model based simulator shows the validity of suggested control logic.

A Study on the Uniform Distribution of Steam Flow in the Superheater Tube System (과열기 관군에서의 증기유량 균일 배분 연구)

  • Park, Ho-Young;Kim, Sung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.416-426
    • /
    • 2008
  • The boiler tube failure often experienced in the superheater of a utility boiler can seriously affect the economic and safe operation of the power plant. It has been known that this failure is mainly caused by the thermal load deviation in the superheater tube system, and deeply intensified by the non-uniform distribution of steam flow rates. The nonuniform steam flow is distinctively prominent at low power load rather than at full power load. In this paper, we analyze the steam flow distribution in the superheater tube system by using one dimensional flow network model. At 30% power load, the deviation of steam flow rate is predicted to be within 0.8% of the averaged flow rate. This deviation can be reduced to 0.1% and 0.07% by assuming two cases, that is, the removal of 13th tube at each tube rows and the installation of intermediate header, respectively. The assumed two cases would be effective for the uniform steam flow distribution across 85 superheater tube rows.

An analysis on the characteristics of superheater organization of ORC system for marine waste heat recovery system(WHRS) (선박폐열회수(WHRS) ORC 시스템의 과열기 구성에 따른 특성 해석)

  • Kim, Jong-Kwon;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • This research designed Waste Heat Recovery System(WHRS) generation system of 250kW whose working fluid is R-245fa and studied on cycle characteristics by superheater organization. It simulated two conditions; series connection and parallel connection between superheater and evaporator. In simulation of series connection of superheater and evaporator, output of 4.7% could be improved because of the increase of enthalpy by overheating of working fluid. When setting 250kW for target output, cycle flux could be reduced by 4.1%. When setting 250kW as a target output of cycle In parallel connection simulation of superheater and evaporator, cycle flux was reduced as flux of heat source fluid for superheater was increased. So, the maximum 7.9% of working fluid pump's electric power was reduced and there was no big change in cycle efficiency and net efficiency by flux ratio.

Design of bilinear observer for Superheater Steam Temperature Estimation (과열기 증기온도 추정을 위한 방선형 관측기의 구성)

  • Lee, Jong-Myeong;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.386-389
    • /
    • 1991
  • The problem of constructing an bilinear observer for use in the control of superheater temperature with desuperheater is considered. The distributed heat input into the superheater is usually not available for use in the observer, and hence is treated as an unknown inputs. The bilinear observer theory for system with unknown inputs is exploited and applied to the problem.

  • PDF

DCS Model Calculation for Steam Temperature System

  • Hwang, Jae-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1201-1204
    • /
    • 2004
  • This paper suggests a DCS (Distributed Control System) model for steam temperature system of the thermal power plant. The model calculated within sectional range is linear. In order to calculate mathematical models, the system is partitioned into two or three sectors according to its thermal conditions, that is, saturated water/steam and superheating state. It is divided into three sections; water supply, steam generation and steam heating loop. The steam heating loop is called 'superheater' or steam temperature system. Water spray supply is the control input. A first order linear model is extracted. For linear approach, sectional linearization is achieved. Modeling methodology is a decomposition-synthetic technique. Superheater is composed of several tube-blocks. For this block, linear input-output model is to be calculated. Each tiny model has its transfer function. By expanding these block models to total system, synthetic DCS linear models are derived. Control instrument include/exclude models are also considered. The resultant models include thermal combustion conditions, and applicable to practical plant engineering field.

  • PDF

Temperature Control of Superheater Steam in Thermal Power Plant (화력발전소의 과열기증기의 온도제어)

  • Shin, Hwi-Beom;Lee, Soon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2006-2011
    • /
    • 2010
  • The superheater in the thermal power plant makes the wet steam into the dry steam with high temperature and high pressure by using the boiler heat. The dry steam pressure rotates the turbine-generator system. The efficiency and life time of the boiler heavily depends on the steam temperature regulation. The steam temperature can be deviated from the reference by the MW demand of the power plant. It is therefore required that the PI(proportional-integral) controller should be robust against the disturbance such as the MW demand. In this paper, the PI controller with the integral state predictor is proposed and applied to regulate the steam temperature of the superheater, and it is compared with the conventional PI controller operated in the thermal power plant in view of control performance.

Fuzzy Controller Design for Steam Temperature Control of Power Plant Superheater (화력발전소 과열기의 증기온도 제어를 위한 퍼지 제어기 설계)

  • 이돈구;이상혁;김주식;유정용
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.80-86
    • /
    • 2002
  • In this paper, we present a method of fuzzy controller design for the power plant superheater in the form of bilinear system. For the steam temperature control, the input variables are constructed by the area of difference between the profiles estimated from bilinear observer and reference profiles, and the time rate of change. We estimate the control rules by T. Takagi and M. Sugeno's fuzzy model. The feasibilities of the suggested method are illustrated via the computer simulation results.

Steam Temperature Controller Design of Power Plant Superheater (발전기 과열기의 증기 온도 제어기 설계)

  • Hong, Hyun-Mun;Lee, Bong-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.3
    • /
    • pp.179-181
    • /
    • 2006
  • In this paper, we present a method of fuzzy controller design for the power plant superheater in the form of bilinear system. For the steam temperature control, the input variables are constructed by the area of difference between the profiles estimated from bilinear observer and reference profiles, and the time rate of change. We estimate the control rules by T. Takagi and M. Sugeno's fuzzy model. The feasibilities of the suggested method are illustrated via the computer simulation result.

  • PDF

A Temperature Control of Thermal Power Plant Superheater System using Iterative Method (반복적 방법을 이용한 화력발전소 과열기 시스템의 온도제어)

  • Sang-Hyuk Lee;Ju-Sik Kim
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.47-55
    • /
    • 1999
  • In this paper, we construct the controller for the heat exchanger system using iterative method. For awlying the linear quadratic control theory to the heat exchanger system which is represented by the bilinear system, we fomrulate the bilinear system to execute iteration We also propose Extended Kalman Filter to estimate bilinear system state for the purpose of state feedback controller design. We also awly the iterative controller to the thennal power plant superheater system temperature control, and computer simulation show that the estimated value follows the superheater steam temperature under the variation of the external inputs, and that the output steam temperature is properly maintained.tained.

  • PDF