• Title/Summary/Keyword: superheat

Search Result 198, Processing Time 0.024 seconds

An Analytic and Experimental Study on the Performance Characteristic of the Rotary Compressor (로타리 압축기 성능특성에 관한 해석 및 실험)

  • 최득관;김경천;차강욱
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.497-504
    • /
    • 2001
  • A study to improve the accuracy of a map-based compressor model with experiment was performed. Corrections on the effects of suction gas superheat and heat leakage from a compressor shell are required to apply the compressor amp model based on the empirical performance data(map) of compressor manufacturers to the actual system. So experiments to assess the effects of superheat and hat leakage were performed and the corrected equations were made. Compressors and refrigerant used in the experiment were the high pressure type rotary compressor and R-22, experiments were performed by compressor calorimeter. From the experiment, a volumetric efficiency correction factor$(F_ν)$ showed the value of 0.77, slightly higher than 0.75 proposed by Dabiri and Rice for low pressure type reciprocating compressor, and the heat leakage from the compressor shell turned out to be a factor that influenced the discharged mass flow rate. The relation between heat leakage of compressor shell and the variation of discharged mass flow rate from compressor was considered in compressor map modeling as an empirical function. With this function, the prediction accuracy of compressor model in system conditions was improved.

  • PDF

The Study on the Performance Characteristics of $NH_3$ Refrigeration System using a Shell and Tube Type Heat Exchanger

  • Hong Suck-Ju;Ha Ok-Nam;Kim Jae-Youl;Kwon Il-Wook;Lee Seung-Jae;Jeon Sang-Sin;Jeong Song-Tae;Ha Kyoung-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.69-74
    • /
    • 2005
  • Nowadays CFC and HCFC refrigerants are restricted because they causes to depletion of ozone layer. Accordingly, an experiment is apply to the $NH_3$ gas for refrigerant to study the performance characteristic and to improve the energy efficiency. An experiment are carried out for the condensed pressure in a range from 14.5bar to 16bar and for degree of superheat in a range from 0 to $10^{\circ}C$ at each condensed pressure. As the result of experiment, when degree of superheat is $1^{\circ}C$ and condensed pressure is 14.5bar, the refrigeration system showed the high performance.

A study on the pulse boiling occurring inside the liquid pool of a closed two-phase thermosyphon (밀폐형 2상 열사이폰의 Pool 내부 Pulse Boiling에 관한 연구)

  • Kim, Cheol-Ju;Mun, Seok-Hwan;Gang, Hwan-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1254-1261
    • /
    • 1997
  • Pulse boiling, the unsteady periodic boiling phenomenon appearing in the evaporator of thermosyphons was investigated by many researchers. In the present study investigations were conducted to examine the evolution of flow patterns at the evaporator, and changes in thermodynamic state that each of liquid pool and vapor experiences through 1 cycle of pulse boiling process. For wall and liquid pool the degree of superheat for the onset of nucleation was examined. It revealed that the degree of superheat increased with the increase of pulse period, reaching to 16.5 deg.C and 23 deg.C for liquid pool and evaporator wall respectively at .tau.=80 sec. The data on flow patterns obtained through series of operation tests were plotted in the coordinates of heat flux and vapor pressure to get a regime map. Further this map could be used to figure out the conditions of pulse boiling for a thermosyphon.

Effect of Radiation on Laminar Film Boiling of Binary Mixtures (2성분 혼합물질의 층류 막비등에서 복사열전달의 효과)

  • Seong Hyeon-Chan;Kim Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.942-951
    • /
    • 2004
  • This paper presents the results of a theoretical study of the effect of radiation during free convective laminar film boiling for methanol/water binary mixtures on an isothermal vertical wall at atmospheric pressure. With the well-known boundary layer theory as a basis, a theoretical model has been formulated into consideration for mass diffusion at liquid phase. The equations are numerically solved by a similarity method to investigate the effects of radiation emissivity on the surface with various parameters such as wall superheat and composition of more volatile component at liquid phase far from the wall. From the results, the distributions of the physical quantifies are investigated in both phases. New correlations are proposed to predict the heat transfer coefficient of binary mixtures. It is shown that the proposed correlations are in good agreement with numerical results and with Bromley's correlation within maximum $11\%$ errors. It is also found that as the wall superheat is increased, radiation effect becomes more important.

The Study on Performance Characteristics in Refrigeration System using R717 and R22 as working fluid (냉매 R717과 R22를 작동유체로 이용한 냉동장치의 성능특성에 관한 연구)

  • Kim, Jin-Hyun;Kim, Jae-Geun;Kim, Jong-Gil;Kim, Yang-Hyun;Hong, Suk-Ju;Ha, Ok-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.495-500
    • /
    • 2006
  • Nowadays HCFCs refrigerant are restricted because it cause depletion of ozone layer. However, natural gases such as ammonia as an organic compound, propane and propylene as hydrocarbon are easy and cheap to obtain as well as environmental. Accordingly, this experiment apply the $NH_3$ and R22 to study the performance characteristic from the superheat control and compare the energy efficiency of two refrigerants from the high performance. The condensing pressure of refrigeration system is increased from 15bar to 16bar and degree of superheat is increased from 0 to $10^{\circ}C$ at each condensing pressure. As the result of experiment, when comparing the each COP, we knew the $NH_3$ is suitable as the alternative refrigerant of the R22.

  • PDF

Design of digital nuclear power small reactor once-through steam generator control system

  • Qian, Hong;Zou, Mingyao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2435-2443
    • /
    • 2022
  • The once-through steam generator used in the small modular reactor needs to consider the stability of the outlet steam pressure and steam superheat of the secondary circuit to achieve better operating efficiency. For this reason, this paper designs a controllable operation scheme for the steam pressure and superheat of the small reactor once-through steam generator. On this basis, designs a variable universe fuzzy controller, first, design the fuzzy control rules to make the controller adjust the PI controller parameters according to the change of the error; secondly, use the domain adjustment factor to further subdivide the input and output domain of the fuzzy controller according to the change of the error, to improve the system control performance. The simulation results show that the operation scheme proposed in this paper have better system performance than the original scheme of the small reactor system, and controller proposed in this paper have better control performance than traditional PI controller and fuzzy PI controller, what's more, the designed control system also showed better anti-disturbance performance in lifting experiment between 100% and 80% working conditions. Finally, the experimental platform formed by connecting the digital small reactor with Matlab/Simulink through OPC(OLE for Process Control) communication technology also verified the feasibility of the proposed scheme.

An Experimental Study on Freezing of Phase Change Material in a Cooled Vertical Tube (수직냉각관내에서 상변화물질의 응고에 관한 실험적 연구)

  • Lee J. M.;Lee C. M.;Yhim J. S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.4
    • /
    • pp.223-229
    • /
    • 1984
  • Experiments were performed for freezing of an initially superheated or nonsuperheated liquid phase in a cooled vertical tube. The liquid was placed in a copper tube whose surface maintained a uniform temperature during the data run and the freezing occurred in a copper tube. The phase change medium was n-odtadecane, a paraffin which freezes at about $61^{\circ}C$. Measurements were made which yielded information about the time dependence of the freezing front, of the amount of frozen mass, and of the various energy components extracted from the tube. The time-wise decay of the initial liquid superheat was also measured. Initial superheat of the liquid tends to moderately diminish the rozen mass and associated latent energy extraction at small times but has lit tie effect on these quantities at large tiems. Natural convection in the liquid Plays a modest role only at small times and disappears when the superheat decay to zero. Although the latent energy constitutes the largest contributor to the total extracted energy, the sensible energy components can make a significant contribution, especially at large tube wall subcoolings, large initial liquid superheating and short freezing time.

  • PDF

The Study on the fin effect in PUre Zinc Casting (순아연주물응고(純亞鉛鑄物凝固)에 있어서 Fin 효과에 관한 연구(硏究))

  • Han, Yoon-Hee;Kim, Myung-Han;Kim, Dong-Ok
    • Journal of Korea Foundry Society
    • /
    • v.5 no.4
    • /
    • pp.289-297
    • /
    • 1985
  • Thin sections in castings solidify faster than thick sections. Solidification rates increase because of an increase in heat transfer from molten meltals to molds through these solidified thin sections. The cooling fin effect in pure zinc casting was studied about the solidification time, superheat, and fin size by adopting the pourout test. The following results could be obtained from the study: (1) The fin effect could be represented by the effective cooling surface area ($A_f/S$) increased. (2) The fin effect could be obtained as functions of solidification time, superheat, and fin size.

  • PDF

Combustion and Microexplosion of AI/Liquid Fuel Slurry Droplets(II)-Theoretical Study- (Al/액체연료 슬러리 액적의 연소와 미세폭발 (II)-이론적 연구-)

  • Jo, Ju-Hyeong;Byeon, Do-Yeong;An, Guk-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.813-822
    • /
    • 1998
  • The microexplosion of a slurry droplet was considered to be caused by the shell formation and the following pressure build-up in the shell which would be promoted by the suppression of evaporation, subsequent superheating and heterogeneous nucleation of liquid carrier. To closely investigate the pressure build-up and the heterogeneous nucleation, a numerical model was introduced by considering the internal temperature distributions with the shell formation, suppression of evaporation and pressure build-up inside. The microexplosion time was estimated by postulating the limit of superheat for heterogeneous nucleation. The simulation yielded a reasonably good agreement with experimental results for Al/n-heptane slurry droplets under various solid loadings.

The Effect of Tube Orientation on Pool Boiling Heat Transfer (튜브 설치 방향이 풀비등 열전달에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.143-151
    • /
    • 2000
  • In order to clarify the effect of tube orientation on pool boiling heat transfer, the experiments were carried out for the saturated pool boiling of water at atmospheric pressure. Through the tests a series of data sets for heat flux versus wall superheat has been obtained using various combinations of tube diameters (D=9.7 $\~$25.4mm), surface roughness ($\varepsilon$=15.1$\~$60.9nm), and tube orientations (horizontal and vertical). ηei experimental results show that the slope of heat flux versus wall superheat becomes smaller than that of the horizontal tube as the surface roughness decreases from $\varepsilon$=60.9 to $\varepsilon$=15.1nm. Such that, two curves for the horizontal and vertical tubes cross each other in accordance with surface roughness and the crossing point can be suggested as q" = ‘-4.768+1.334$\varepsilon$+0.055${\varepsilon}^2$.