DOI QR코드

DOI QR Code

The Effect of Tube Orientation on Pool Boiling Heat Transfer

튜브 설치 방향이 풀비등 열전달에 미치는 영향

  • 강명기 (안동대학교 기계공학교육과)
  • Published : 2000.01.01

Abstract

In order to clarify the effect of tube orientation on pool boiling heat transfer, the experiments were carried out for the saturated pool boiling of water at atmospheric pressure. Through the tests a series of data sets for heat flux versus wall superheat has been obtained using various combinations of tube diameters (D=9.7 $\~$25.4mm), surface roughness ($\varepsilon$=15.1$\~$60.9nm), and tube orientations (horizontal and vertical). ηei experimental results show that the slope of heat flux versus wall superheat becomes smaller than that of the horizontal tube as the surface roughness decreases from $\varepsilon$=60.9 to $\varepsilon$=15.1nm. Such that, two curves for the horizontal and vertical tubes cross each other in accordance with surface roughness and the crossing point can be suggested as q" = ‘-4.768+1.334$\varepsilon$+0.055${\varepsilon}^2$.

Keywords

References

  1. Corletti M. M. and Hochreiter L. E., 1991, 'Advanced Light Water Reactor Passive Residual Heat Removal Heat Exchanger Test,' Proc. of the 1st JSME/ASME Joint International Conference on Nuclear Engineering, Tokyo, Japan, pp. 381-387
  2. Kang M. G., 1998, 'Experimental Investigation of Tube Length Effect On Nucleate Pool Boiling Heat Transfer,' Annals of Nuclear Energy, Vol. 25, No. 4-5, pp. 295-304 https://doi.org/10.1016/S0306-4549(97)00056-X
  3. Chun M. H. and Kang M. G., 1998, 'Effects of Heat Exchanger Tube Parameters on Nucleate Pool Boiling Heat Transfer,' Trans. ASME, J. of Heat Transfer, Vol. 120, pp. 468-476
  4. Jakob M. and Hawkins G. A., 1957, Elements of Heat Transfer, 3rd. ed., Wiley International Edition, pp. 206-210
  5. van Stralen S. J. D. and W. M. Sluyter, 1969, 'Investigations on the Critical Heat Flux of Pure Liquids and Mixtures under Various Conditions,' Int. J. Heat Mass Transfer, Vol. 12, pp. 1353-1384 https://doi.org/10.1016/0017-9310(69)90022-2
  6. Nishikawa K., Fujita Y., Uchida S., and Ohta H., 1984, 'Effect of Surface Configuration on Nucleate Boiling Heat Transfer,' Int. J. Heat Mass Transfer, Vol. 27, No.9, pp. 1559-1571 https://doi.org/10.1016/0017-9310(84)90268-0
  7. Chyu M. C. and Mghamis A. M., 1991, 'Nucleate Boiling on Two Cylinders in Line Contact,' Int. J. Heat Mass Transfer, Vol. 34, No. 7, pp. 1783-1790 https://doi.org/10.1016/0017-9310(91)90153-6
  8. Howard A. H. and Mudawar I., 1999, 'Orientation Effects on Pool Boiling Critical Heat Flux(CHF) and Modeling of CHF for Near-Vertical Surfaces,' Int. J. Heat Mass Transfer, Vol. 42, pp. 1665-1688 https://doi.org/10.1016/S0017-9310(98)00233-6
  9. Githinji P.M. and Sabersky R. H., 1963, 'Some Effects of the Orientation of the Heating Surface in Nucleate Boiling,' ASME, J. of Heat Transfer, Nov., p. 379
  10. El-Genk M. S. and Saber H. H., 1998, 'Heat Transfer Correlations for small, uniformly heated liquid pools,' Int. J. Heat Mass Transfer, Vol. 41, No.2, pp. 261-274 https://doi.org/10.1016/S0017-9310(97)00143-9
  11. Gupta A., Saini J. S., and Varma H. K., 1995, 'Boiling heat transfer in small horizontal tube bundles at low cross-flow velocities,' Int. J. Heat Mass Transfer, Vol. 38, No.4, pp. 599-605 https://doi.org/10.1016/0017-9310(94)00282-Z