• Title/Summary/Keyword: superfluid density

Search Result 4, Processing Time 0.018 seconds

Linear Temperature Dependence of Magnetic Penetration Depth Length at Low T in an Isotropic Superconductor

  • Nam, Sang-Boo
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.11-14
    • /
    • 2000
  • The notion of the finite pairing interaction energy range Td is shown to result in a linear temperature dependence of the London magnetic penetration depth length, ${\Delta}{\lambda}{/\lambda}(0)=(T/Td)2/\pi)ln2$ at low T in the case of the s-wave pairing state, accounting for data of high Tc superconductor by Hardy et al.

  • PDF

Radial basis function collocation method for a rotating Bose-Einstein condensation with vortex lattices

  • Shih, Y.T.;Tsai, C.C.;Chen, K.T.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.131-144
    • /
    • 2012
  • We study a radial basis function collocation method (RBFCM) to discretize a coupled nonlinear Schr$\ddot{o}$dinger equation (CNLSE) that governs a two dimensional rotating Bose-Einstein condensate (BEC) with an angular momentum rotation term. We exploit a RBFCM-continuation method (RBFCM-CM) to trace the solution curve of the CNLSE. We compare the performance of the RBFCM-CM with the FEM-CM. We observe that the RBFCM-CM is very robust in a coarse grid for resolving the ground state solution with many vortices when the angular momentum rotation is close to the limit. Numerical results demonstrate the efficiency and accuracy of the RBFCM-CM for computing the superfluid density of the ground level of the BEC.

Infrared Spectroscopy of Imidazole Trimer in Helium Nanodroplets: Free NH Stretch Mode

  • Lee, Seul-Ki;Lee, Seung-Jun;Ahn, Ah-Reum;Kim, Yu-Sic;Min, Ah-Reum;Choi, Myong-Yong;Miller, Roger E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.885-888
    • /
    • 2011
  • We report the first vibrational band assignment of imidazole trimer (IMT) solvated in helium nanodroplets. Several congested vibrational bands of imidazole (IM) clusters were obtained in the frequency region of $3513-3515\;cm^{-1}$ and vibrationally resolved due to the extremely low temperature (0.37 K) and very weak solutesolvent interaction environments of helium droplets. The unambiguous free NH band assignment was achieved with an aid of pick-up oven temperature dependence and vibrational transition moment angle (VTMA) experiments as well as density functional theory (DFT) calculations. The band at $3514.3\;cm^{-1}$ is attributed to the free NH stretching mode of linear IMT clusters, easily formed by the dipole-dipole interactions of IM in ultracold helium nanodroplets.