• Title/Summary/Keyword: superficial velocity

Search Result 129, Processing Time 0.021 seconds

Comparative Study of Mass Transfer and Bubble Hydrodynamic Parameters in Bubble Column Reactor: Physical Configurations and Operating Conditions

  • Sastaravet, Prajak;Chuenchaem, Chomthisa;Thaphet, Nawaporn;Chawaloesphonsiya, Nattawin;Painmanakul, Pisut
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.345-354
    • /
    • 2014
  • In this paper, effects of physical configurations and operating conditions on bubble column performance were analyzed in terms of bubble hydrodynamic and mass transfer parameters. Bubble column with 3 different dimensions and 7 gas diffusers (single / multiple orifice and rigid / flexible orifice) were applied. High speed camera and image analysis program were used for analyzing the bubble hydrodynamic parameters. The local liquid-side mass transfer coefficient ($k_L$) was estimated from the volumetric mass transfer coefficient ($k_La$) and the interfacial area (a), which was deduced from the bubble diameter ($D_B$) and the terminal bubble rising velocity ($U_B$). The result showed that the values of kLa and a increased with the superficial gas velocity (Vg) and the size of bubble column. Influences of gas diffuser physical property (orifice size, thickness and orifice number) can be proven on the generated bubble size and the mass transfer performance in bubble column. Concerning the variation of $k_L$ coefficients with bubble size, 3 zones (Zone A, B and C) can be observed. For Zone A and Zone C, a good agreement between the experimental and the predicted $K_L$ coefficients was obtained (average difference of ${\pm}15%$), whereas the inaccuracy result (of ${\pm}40%$) was found in Zone B. To enhance the high $k_La$ coefficient and absorption efficiency in bubble column, it was unnecessary to generate numerous fine bubbles at high superficial gas velocity since it causes high power consumption with the great decrease of $k_L$ coefficients.

Optimization fluidization characteristics conditions of nickel oxide for hydrogen reduction by fluidized bed reactor

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Kim, Yong-Ha;Lee, Kwan-Young;Park, Young-Ok
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2321-2326
    • /
    • 2018
  • We evaluated the optimal conditions for fluidization of nickel oxide (NiO) and its reduction into high-purity Ni during hydrogen reduction in a laboratory-scale fluidized bed reactor. A comparative study was performed through structural shape analysis using scanning electron microscopy (SEM); variance in pressure drop, minimum fluidization velocity, terminal velocity, reduction rate, and mass loss were assessed at temperatures ranging from 400 to $600^{\circ}C$ and at 20, 40, and 60 min in reaction time. We estimated the sample weight with most active fluidization to be 200 g based on the bed diameter of the fluidized bed reactor and height of the stocked material. The optimal conditions for NiO hydrogen reduction were found to be height of sample H to the internal fluidized bed reactor diameter D was H/D=1, reaction temperature of $550^{\circ}C$, reaction time of 60 min, superficial gas velocity of 0.011 m/s, and pressure drop of 77 Pa during fluidization. We determined the best operating conditions for the NiO hydrogen reduction process based on these findings.

Static Pressure Drop of Airflow in Packed-bed of Fruits and Vegetables (청과물 퇴적층에서의 공기유동 정압강하)

  • 김의웅;김병삼;남궁배;정진웅;김동철;금동혁
    • Journal of Biosystems Engineering
    • /
    • v.21 no.1
    • /
    • pp.44-51
    • /
    • 1996
  • The purpose of this paper is to obtain the basic data for design of pressure cooling system. Static pressure drop, as a function of superficial velocity, was measured for different stacking methods and stacking heights of some fruits and vegetables. At given superficial velocity, sphericity and void fraction had a much greater influence on static pressure drop than average diameter of spherical fruits such as apple, peach, tomato and kiwi fruit. Among cylindrical vegetables such as cucumber, carrot, radish and chinese cabbage, cucumber showed different pattern of static pressure drop because of its bended shape, radish showed less static pressure drop than other vegetables because its large sizes of voids. When cucumber and spinach were stacked vertically and horizontally to air flow, a much greater static pressure drop was shown in vertical than in horizontal type, therefore static pressure drop was affected not only by void fraction but also by void shape. Also, in packed-beds of fruits and vegetables, static pressure drop could be estimated very well by Ramsins equation.

  • PDF

Resistance to Air Flow through Fruits and Vegetables in Bulk (산물퇴적 청과물의 송풍저항 특성)

  • 윤홍선;조영길;박판규;박경규
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.333-342
    • /
    • 1995
  • The resistance to air flow through fruits and vegetables in bulk was an important consideration in the design of the pressure cooling system. The amount of resistance to air flow through produce in bulk normally depended upon air flow rate, stacking depth, porosity, stacking patterns and shape and site of product. But, there was not enough information relating the effects of those factors on air flow resistance. The objectives of this study were to investigate the effect of stacking depth, stacking patterns, porosity and airflow rate on airflow resistance and to develop a statistical model to predict static pressure drop across the produce bed as a function of air flow rate, stacking depth, bed porosity, and product size. Mandarins and tomatoes were used in the experiment. The airflow rate were in the range of 0.1~1.0 ㎥/s.$m^2$, the porosity were in the range of 0.25~0.45, the depth were in the range of 0.3~0.9m and the equivalent diameters were 5.3cm and 6.3cm for mandarins, and 6.5cm and 8.5cm for tomatoes. Three methods of stacking arrangement were used i.e. cubic, square staggered, and staggered stacking arrangement. The results were summarized as follows. 1. The pressure drops across produce bed increased in proportion to stacking depth and superficial air velocity and decreased in proportion to porosity. 2. The increasing rates of pressure drop according to stacking patterns with the increase of superficial air velocity were different one another. The staggered stacking arrangement produced the highest increasing rate and the cubic stacking arrangement produced the lowest increasing rate. But it could be assumed that the stacking patterns had not influenced greatly on pressure drops if it was of equal porosity. 3. The statistical models to predict the pressure drop across produce bed as a function of superficial air velocity, stacking depth, porosity, and product diameter were developed from these experiments.

  • PDF

Foam Separation in Recirculating Aquaculture System (순환여과식 양어장의 포말분리)

  • SUH Kuen-Hack;LEE Min-Gyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.239-243
    • /
    • 1997
  • A continuous foam separator has been used to remove TSS, $NH_3\;and\;NO_2^-$ from the recirculating water in aquaculture. Experimental runs were carried out to determine the foam separation variables, such as, hydraulic retention time, superficial air velocity and foam .height. The removal efficiency of TSS, $NH_3\;and\;NO_2^-$ was increased with hydraulic retention time and superficial air velocity, and removal efficiency of $NH_3$ was increased steadily with foam height. As DO concentration was increased with superficial air velocity and foam height, foam separator is also used for oxygen addition. It was concluded that foam separator might offer better perspective for removal of harmful components in fish culture water.

  • PDF

Operating parameters in electrodialysis membrane processes for removal of arsenic in groundwater (지하수내 비소제거를 위한 전기투석 막여과 운전인자 연구)

  • Choi, Su Young;Park, Keun Young;Lee, Seung Ju;Choi, Dan Bi;Park, Ki Young;Kim, Hee Jun;Kweon, Ji Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.449-457
    • /
    • 2016
  • In this study, the effectiveness of electrodialysis in removing inorganic arsenic from groundwater was investigated. To evaluate the feasibility of the electrodialysis, operating parameters such as treatment time, feed concentration, applied voltage and superficial velocity were experimentally investigated on arsenic removal. The higher conductivity removal and arsenic removal efficiency were obtained by increasing applied voltages and operation time. An increase of salinity concentrations in arsenic polluted groundwater exerted no effects on the arsenic separation ratios. Arsenic polluted waters were successfully treated with stack voltages of 1.8 ~ 2.4 V/cell-pair to approximately 93.4% of arsenic removal. Increase flow rate in diluate cell gave positive effect to removal rate. However, increase of superficial velocity in the concentrated cell exerted no effects on either the conductivity reduction or on the separation efficiency. Hopefully, this paper will provide direction in selecting appropriate operating conditions of electrodialysis for arsenic removal.

The Dynamic Characteristics of a Two Phase Fluidized Beds (이상 유동층 반응기의 동특성에 관하여)

  • Suh, Myung-Gyo;Suh, Jung-Ho;Kang, Jun-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.210-213
    • /
    • 1993
  • The purpose of this research was to investigate fluidization characteristics of three solid particles, correlations between voidage and superficial velocity. The inside diameter of a column did not affect the fraction void-superficial velocity relationship for fluidization systems which was obtained as follows: $\frac{u}{u_t}={\varepsilon}^{3.703}----Sea\;Sand$ $\frac{u}{u_t}={\varepsilon}^{3.5665}----long\;Exchange$ $\frac{u}{u_t}={\varepsilon}^{4.066}----GAC$ And the sphericial type media is good for fluidized systems as it maintains low voidage. Actually, if biofilm attached to media (bioparticle), the density became lower in fluidized bed biofilm reactor. Therefore, as the density of media become higher, it is easy to maintain fluidized beds.

  • PDF

Treatment of Aquacultural Recirculating Water by Foam Separation - II. Characteristics of Solid Removal - (포말 분리법을 이용한 양어장 순환수 처리 - II. 고형물 제거특징 -)

  • SUH Kuen-Hack;LEE Min-Gyu;LEE Min-Soo;KIM Byong-Jin;KIM Eun-Jung;CHO Moon-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.334-339
    • /
    • 1997
  • The feasibility of foam separation to remove solid produced from fish culture water was investigated. Performance characteristics of foam separator were highly dependent upon the operating parameters which were superficial air velocity, Hydraulic retention time (HRT), and foam height. About $50\%$ of the total protein contained in a sample of fish culture water could be removed by foam separator. The removal efficiencies of protein, T-N, TA, and solid components were increased with increasing superficial air velocity and HRT. The combined effects of these operational variables show that removal rates of TVS increase with increasing superficial air velocity and HRT, and decrease as foam height goes up. It could be confirmed that foam separator might offer good perspective for removal of harmful components such as TA and TVS in aquacultural recirculating water.

  • PDF

Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media (고점성 낮은표면장력 매체 기포탑에서 열전달)

  • Kim, Wan Tae;Lim, Dae Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.516-521
    • /
    • 2014
  • Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02~0.1 m/s), liquid viscosity ($0.1{\sim}0.3Pa{\cdot}s$) and surface tension ($66.1{\sim}72.9{\times}10^{-3}N/m$) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; $$h=2502U^{0.236}_{G}{\mu}^{-0.250}_{L}{\sigma}^{-0.028}_L$$ $$Nu=325Re^{0.180}Pr^{-0.067}We^{0.028}$$.

KIER Liquefaction R & D's status (KIER 액화 기술 개발 현황)

  • Yang, Jung-Il;Yang, Jung Hoon;Lee, Ho-Tae;Chun, Dong Hyun;Kim, Hak-Joo;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.110.1-110.1
    • /
    • 2010
  • A bench scale slurry bubble column reactor (SBCR) with active-Fe based catalyst was developed for the Fischer-Tropsch synthesis (FTS) reaction. Considering the highly exothermic reaction heat generated in the bench scale SBCR, an effective cooling system was devised consisting of a U-type dip tube submerged in the reactor. Also, the physical and chemical properties of the catalyst were controlled so as to achieve high activity for the CO conversion and liquid oil ($C_{5+}$) production. Firstly, the FTS performance of the FeCuK/$SiO_2$ catalyst in the SBCR under reaction conditions of $265^{\circ}C$, 2.5 MPa, and $H_2/CO=1$ was investigated. The CO conversion and liquid oil ($C_{5+}$) productivity in the reaction were 88.6% and 0.226 $g/g_{cat}-h$, respectively, corresponding to a liquid oil ($C_{5+}$) production rate of 0.03 bbl/day. To investigate the FTS reaction behavior in the bench scale SBCR, the effects of the space velocity and superficial velocity of the synthesis gas and reaction temperature were also studied. The liquid oil production rate increased upto 0.057 bbl/day with increasing space velocity from 2.61 to 3.92 $SL/h-g_{Fe}$ and it was confirmed that the SBCR bench system developed in this research precisely simulated the FTS reaction behavior reported in the small scale slurry reactor.

  • PDF