• 제목/요약/키워드: superelastic behavior

검색결과 29건 처리시간 0.031초

Buckling and postbuckling behavior of solid superelastic shape memory alloy shafts

  • Rahman, Muhammad Ashiqur;Qiu, Jinhao;Tani, Junji
    • Structural Engineering and Mechanics
    • /
    • 제23권4호
    • /
    • pp.339-352
    • /
    • 2006
  • Observing the unique stress-strain curves of the superelastic shape memory alloy (SMA) in tension and compression, the primary intention of this study is to investigate the behavior of the shafts made of the same material, under torsional loading-unloading cycles for large angle of twist. Experiments have been performed for the superelastic SMA shafts with different unsupported lengths and angles of twist and the results are compared with those of stainless steel (SUS304) shafts under similar test conditions. As expected for the superelastic SMA, the residual strains are small enough after each cycle and consequently, the hysteresis under loading-reverse loading is much narrower than that for the SUS304. For large angle of twists, the torsional strength of the superelastic SMA increases nonlinearly and exceeds that of SUS304. Most interestingly, the slender solid superelastic SMA shafts are found to buckle when acted upon torsion for large angle of twist.

초탄성 형상기억합금 능동제어 가새시스템을 이용한 중심가새프레임 구조물의 지진거동 및 복원성능 평가 (Seismic Behavior and Recentering Capability Evaluation of Concentrically Braced Frame Structures using Superelastic Shape Alloy Active Control Bracing System)

  • 허종완;이두재;조양희
    • 한국지진공학회논문집
    • /
    • 제16권6호
    • /
    • pp.1-12
    • /
    • 2012
  • The researches related to active control systems utilizing superelastic shape memory alloys (SMA) have been recently conducted to reduce critical damage due to lateral deformation after severe earthquakes. Although Superelastic SMAs undergo considerable inelastic deformation, they can return to original conditions without heat treatment only after stress removal. We can expect the mitigation of residual deformation owing to inherent recentering characteristics when these smart materials are installed at the part where large deformation is likely to occur. Therefore, the primary purpose of this research is to develop concentrically braced frames (CBFs) with superelastic SMA bracing systems and to evaluate the seismic performance of such frame structures. In order to investigate the inter-story drift response of CBF structures, 3- and 6-story buildings were design according to current design specifications, and then nonlinear time-history analyses were performed on numerical 2D frame models. Based on the numerical analysis results, it can be comparatively verified that the CBFs with superelastic SMA bracing systems have more structural advantages in terms of energy dissipation and recentering behavior than those with conventional steel bracing systems.

Cyclic behavior of superelastic shape memory alloys (SMAs) under various loading conditions

  • Hu, Jong Wan
    • 도시과학
    • /
    • 제7권1호
    • /
    • pp.5-9
    • /
    • 2018
  • The nickel-titanium shape memory alloy (SMA), referred to as Nitinol, exhibits a superelastic effect that can be restored to its original shape even if a significant amount of deformation is applied at room temperature, without any additional heat treatment after removal of the load. Owing to these unique material characteristics, it has widely used as displacement control devices for seismic retrofitting in civil engineering fields as well as medical, electrical, electronic and mechanical fields. Contrary to ordinarty carbon steel, superelastic SMAs are very resistant to fatigue, and have force-displacement properties depending on loading speed. The change for the mechanical properties of superelastic SMAs are experimentally inviestigated in this study when loading cycle numbers and loading speeds are different. In addition, the standardized force-displacement properties of such superelastic SMAs are proposed with an aim to efficiently design the seismic retrofitting devices made of these materials.

초탄성 니티놀 형상기억합금의 준정적 거동에 대한 수치해석적 재현 (Numerical Simulation for the Quasi-static Behavior of Superelastic Nitinol Shape Memory Alloys (SMAs))

  • 허종완
    • 한국강구조학회 논문집
    • /
    • 제27권6호
    • /
    • pp.493-501
    • /
    • 2015
  • 초탄성 형상기억합금은 상온에서 소성 범위를 초월하여 상당량의 변위를 가하더라도 하중을 제거 후에 별도의 열처리를 가하지 않더라도 원상태로 복원이 가능한 특수한 금속이다. 자동치유가 가능한 형상기억합금의 특유한 재료적인 성질로 인하여 구조물에서 변위가 집중되는 부분에 기존에 주로 사용되는 강재를 대체하여 이러한 특수 합금 재료가 널리 활용되기 시작하였다. 하지만 형상기억합금을 활용한 구조물의 기본적인 설계와 성능 검증을 하기 위해 고등적인 구조해석에 필요한 재료적인 모델의 개발과 연구의 노력이 부족하기 때문에 본 재료를 현장에서 적용하기에는 여전히 많은 제약을 받고 있다. 따라서 본 연구에서는 초탄성 형상기억합금의 거동을 수치해석적인 방법으로 재현이 가능한 구성적인 재료 모델의 소개와 프로그램 코딩에 대하여 다루고자 한다. 또한 본 연구에서 제시된 재료 모델의 타당성을 입증하기 위하여 수치해석적으로 재현된 물리적인 거동을 실험에서 얻어진 데이터에 비교 및 보정 작업도 수행하였다. 아울러 이러한 재료 모델로 구현된 초탄성 형상기억합금의 물리적인 물성치를 구조 해석에 적용하고 정확성을 검증하여 현장 적용의 타당성을 입증하였다.

Behavior of exterior concrete beam-column joints reinforced with Shape Memory Alloy (SMA) bars

  • Azariani, Hossein Rezaee;Esfahani, M. Reza;Shariatmadar, Hashem
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.83-98
    • /
    • 2018
  • This research was conducted to study the behavior of exterior concrete beam-column joints with reinforced shape memory alloy (SMA) bars tested under cyclic loading. These bars benefit from superelastic behavior and can stand high loads without residual strains. The experimental part of the study, 8 specimens of exterior concrete beam-column joints were made and tested. Two different types of concrete with 30 and 45 MPa were used. Four specimens contained SMA bars and 4 specimens contained steel bars in beam-column joints. Furthermore, different transverse reinforcements were used in beams investigate the effects of concrete confinement. Specimens were tested under cyclic loading. Results show that SMA bars are capable of recentering to their original shape after standing large displacements. Due to the superelastic behavior of SMA bars, cracks at the joint core vanish under cyclic loading. As the cyclic loading increased, bending failure occurred in the beam outside the joint core. In the analytical parts of the study, specimens were simulated using the SeismoStruct software. Experimental and analytical results showed a satisfactory correlation. Plastic hinge length at the beam joint for specimens with SMA and steel bars was calculated by empirical equations, experimental and analytical results. It was shown that Paulay's and Priestley's equations are appropriate for concrete beam-column joints in both types of bars.

주조 형상기억 니켈-티타늄 합금의 초탄성 (SUPERELASTICITY OF CAST SHAPE MEMORY Ni-Ti ALLOY)

  • 최동익;최목균
    • 대한심미치과학회지
    • /
    • 제3권1호
    • /
    • pp.32-43
    • /
    • 1995
  • Ni-Ti alloy has excellent corrosion resistance, biocompatibility, shape memory effect and superelasticity, so it has been used widely in biomedical fields. But it has difficulty in casting due to its high melting temperature and oxygen affinity at high temperature. Recently it has been attempted to cast Ni-Ti alloy using new casting machine and investment. The purpose of this study was to examine the superelastic behavior of cast shape memory Ni-Ti alloy and to compare the mechanical properties of the cast shape memory alloy with those of commercial alloys for removable partial denture framework. Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was cast with dental argon-arc pressure casting machine and Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy, pure titanium were cast as reference. Experimental cast Ni-Ti alloy was treated with heat($500{\pm}2^{\circ}C$) in muffle furnace for 1 hour. Transformation temperature range of cast Ni-Ti alloy was measured with differential scanning calorimetry. The superelastic behavior and mechanical properties of cat Ni-Ti alloy were observed and evaluated by three point bending test, ultimate tensile test, Vickers microhardness test and scanning electron microscope. The results were as follows : 1. Cast Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was found to have superelastic behavior. 2. Stiffness of cast Ni-Ti alloy was considerably lesser than that of commercial alloys for removable partial denture. 3. Permanent deformation was observed in commercial alloys for removable partial denture framework at three point bending test over proportional limit(1.5mm deflection), but was not nearly observed in cast Ni-Ti alloy. 4. On the mechanical properties of ultimate tensile strength, elongation and Vickers microhardness number, cast Ni-Ti alloy was similiar to Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy and pure titanium. With these results, cast Ni-Ti alloy had superelastic behavior and low stiffness. Therefore, it is suggested that cast Ni-Ti alloy may be applicated to base metal alloy for removable partial denture framework.

  • PDF

초탄성 거동을 고려한 NiTi 합금 튜브의 변형해석 (Finite Element Analysis of NiTi Alloy Tubes with the Superelastic Behavior)

  • 강우종
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.100-106
    • /
    • 2006
  • NiTi alloy known as its shape memory effect also has superelastic characteristic, which makes it possible to be elastic under large deformation. Since the tensile strength of the alloy is very high and density is low compared to carbon steel, it can be applied to lightweight structural design. In order to design structures with shape memory alloy, finite element analysis is used and a constitutive algorithm based on Aurrichio's model is added to LS-DYNA as a user subroutine. Explicit time integration and shell element formulation are used to simulate thin-walled structures. The algorithm uses Drucker-Prager type loading condition to calculate martensite volume fraction during the transformation. The implemented algorithm is verified in uni-axial loading condition and martensite phase transformation can be detected well with the algorithm. In this study, as a energy absorbing structure, thin-walled tube is modeled with finite elements and the deformation behavior is studied. Simulation results has shown that the martensite transformation was generated in loading condition. After plastic deformation reached, the load decreases linearly without reverse martensite transformation.

Displacement-recovery-capacity of superelastic SMA fibers reinforced cementitious materials

  • Choi, Eunsoo;Mohammadzadeh, Behzad;Hwang, Jin-Ha;Lee, Jong-Han
    • Smart Structures and Systems
    • /
    • 제24권2호
    • /
    • pp.157-171
    • /
    • 2019
  • This study investigated the effects of the geometric parameters of superelastic shape memory alloy (SE SMA) fibers on the pullout displacement recovering and self-healing capacity of reinforced cementitious composites. Three diameters of 0.5, 0.7 and 1.0 mm and two different crimped lengths of 5.0 and 10.0 mm were considered. To provide best anchoring action and high bond between fiber and cement mortar, the fibers were crimped at the end to create spear-head shape. The single fiber cement-based specimens were manufactured with the cement mortar of a compressive strength of 84 MPa with the square shape at the top and a dog-bone shape at the bottom. The embedded length of each fiber was 15 mm. The pullout test was performed with displacement control to obtain monotonic or hysteretic behaviors. The results showed that pullout displacements were recovered after fibers slipped and stuck in the specimen. The specimens with fiber of larger diameter showed better displacement recovering capacity. The flag-shaped behavior was observed for all specimens, and those with fiber of 1.0 mm diameter showed the clearest one. It was observed that the length of fiber anchorage did not have a significant effect on the displacement recovery, pullout resistance and self-healing capacity.

초탄성 형상기억합금을 활용한 좌굴방지 가새프레임 구조물의 지진거동 및 성능평가 (Seismic Behavior and Performance Evaluation of Uckling-restrained Braced Frames (BRBFs) using Superelastic Shape Memory Alloy (SMA) Bracing Systems)

  • 허종완
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.875-888
    • /
    • 2013
  • 최근에는 초탄성 형상기억합금을 구조물 일부에 설치하여 지진과 같은 외부 충격하중으로 인해 발생되는 영구적인 소성 변형을 줄이고 자동치유가 가능한 변위제어 시스템을 개발하는 연구가 활발하게 진행되고 있다. 초탄성 형상 기억합금은 상당량의 변위를 가하더라도 별도의 열처리 없이도 상온에서 단지 하중만을 제거하여도 원형으로 복원이 가능한 독특한 합성 금속재료이다. 뼈대 구조물에서 변형이 집중이 되는 부위에 기존에 사용된 강재를 대신하여 초탄성 형상기억합금을 사용한다면 시스템의 복원 효과를 극대화 시킬 수 있다. 따라서 본 연구는 내진성능이 우수한 좌굴방지 가새프레임에 초탄성 형상기억합금 소재를 접목시킨 새로운 구조 시스템을 제안하고 자 한다. 본 연구에서 제안된 구조시스템의 성능을 검증하기 위하여 현재 사용되는 설계코드를 참고하여 6층의 가새프레임 빌딩을 설계를 하고 2차원적인 유한요소 프레임 모델에 각각의 지진 위험도 레벨의 가속도 데이터를 사용하여 비선형 동적 해석을 실시하였다. 해석결과를 바탕으로 초탄성 형상기억합금 가새시스템을 사용한 프레임 구조물과 기존의 가새시스템을 성능적인 측면에서 서로 비교하였다. 해석결과는 지진하중 이후에 초탄성 형상기억합금 가새시스템은 구조물에 잔류 처짐을 감소하는데 매우 효율적임을 보여주고 있다.

형상기억합금 튜브의 buckling 거동 (Buckling behavior of shape-memory alloy tube)

  • 최점용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.378-381
    • /
    • 2008
  • The buckling behavior of cylindrical shape-memory alloy and aluminum tube is investigated at room temperature using a split Hopkinson pressure bar and an Instron hydraulic machine with a specially designed recording system. The shape-memory alloy at superelastic property regime buckles gradually in quasi-static loading, and fully recovers upon unloading. However, the buckling of aluminum tube is sudden and catastrophic, and shows permanent deformation. This gradual buckling of shape-memory alloy is associated with the forward and reverse transformation of stress-induced martensite and seems to have a profound effect on the unstable deformation of tube structures made from shape-memory alloy.

  • PDF