• Title/Summary/Keyword: supercritical flow

Search Result 198, Processing Time 0.024 seconds

Heat Transfer and Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube (초임계 $CO_2$의 헬리컬 코일관 내 열선단과 압력강하 특성)

  • Yu, Tae-Guen;Kim, Dae-Hui;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.353-358
    • /
    • 2005
  • The heat transfer and pressure drop of supercritical $CO_2$ cooled in a helically coiled tube was investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The experimental apparatus of the refrigerant loop consist of receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a helically coiled tube in tube counter flow heat exchanger with $CO_2$ flowed inside the inner tube and coolant( water) flowed along the outside annular passage, It was made of it copper tube with the inner diameter of 4.55[mm]. the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were $200^{\sim}600$ [kg/m2s] and the inlet pressure of gas cooler varied from 7.5 [MPa] to 10.0 [MPa]. The main results are summarized as follows : The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

Supercritical water oxidation of Dimethyl methylphosphonate(DMMP) (Dimethyl methylphosphonate(DMMP)의 초임계수 산화반응)

  • Lee, Hae-Wan;Ryu, Sam-Gon;Lee, Jong-Chol;Hong, Deasik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.636-643
    • /
    • 2006
  • Supercritical water oxidation of DMMP using continuous flow reactor was studied at temperature ranging from 440 to $540^{\circ}C$ and a fixed pressure of 242 bar. The range of residence times in the reactor was from 10 to 26 s, and oxygen excess value varied from -40 to 200%. Destruction efficiencies (DE) of DMMP were greater than 99.7% at $540^{\circ}C$, and increased as the DMMP concentrations were increased. DE of DMMP were significantly affected by oxygen concentration under stoichiometric amount, but showed little difference over stoichiometric amount. On the basis of 30 data with conversions greater than 85%, kinetic correlations for the DE of DMMP were developed. The pre-exponential factor was $(1.10{\pm}0.76){\times}10^6$, and the activation energy was $90.66{\pm}3.87kJ/mol$, and the reaction orders for DMMP and oxygen were $1.02{\pm}0.03$, $0.32{\pm}0.03$, respectively. The model predictions agreed well with the experimental data.

Heat Transfer Characteristics of Supercritical $CO_2$ in Helical Coil Gas Coolers on the Change of Coil Diameters (코일직경변화에 따른 헬리컬 코일형 가스냉각기내 초임계 이산화탄소의 냉각열전달 특성)

  • Son, Chang-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.44-48
    • /
    • 2007
  • The cooling heat transfer characteristics of supercritical $CO_2$ in a helical coil gas cooler on the change of coil diameters are experimentally investigated. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flow-meter, a pre-heater and a helical coil gas cooler (test section). The test sections are made of a copper tube which the inner diameter is 4.55 mm and the helical coil diameters are done of 26.75 mm and 41.35 mm. The mass fluxes of refrigerant are varied from 200 to 800 [$kg/m^2s$] and the inlet pressures of gas cooler are 7.5 to 10.0 (MPa). A gas cooler with helical coil diameter of 26.75 mm has larger heat transfer coefficient than that of 41.35 mm. Also, when compared with experimental data and published correlations avaliable, most of correlations are under-predicted, but Pitla published correlations avaliable, most of correlations are under-predicted, but Pitla et al.'s correlation shows a relatively good coincidence with the experimental data except the region of pseudo critical temperature.

  • PDF

Effective Extraction of Sea Mustard with Supercritical Carbon Dioxide (초임계 이산화탄소에 의한 미역의 효과적 추출)

  • Lee Seok-Hee;Cheon Jae-Kee;Ju Chang-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.33-40
    • /
    • 1999
  • The extraction characteristics of lipids from powdered sea mustard have been investigated by the use of supercritical carbon dioxide($SC-CO_2$) and cosolvents. The extraction rate was increased as the particle size of the sea mustard is smaller, the pressure is higher, the temperature is lower, and the quantities of the fluid is more. However, the extraction yield of lipids from sea mustard was almost constant at a given condition. The optimum extraction condition was determined with the extraction yield of $1.45wt\%$ at 300um of particle size, 313K of $SC-CO_2$ temperature, 13.8MPa of pressure, and 30L/min of flow rate. Ethanol was the most efficient cosolvent among ethanol, methanol, and hexane. The extraction yield was increased at about 2.21times by the addition of ethanol as a cosolvent to $SC-CO_2$. As the residence time and the average concentration of lipids were decreased, the mass transfer parameter($k_fa$) was increased. But the opposite result was obtained when the ethanol was used as cosolvent.

  • PDF

Extraction of Triterpenoid Saponin (glycyrrhizin) from Liquorice by Co-solvent Modified Supercritical Carbon Dioxide (보조용매로 변형된 초임계 이산화탄소에 의한 감초의 triterpenoid saponin(glycyrrhizin)의 추출)

  • Kim, Hyun-Seok;Kim, Byung-Yong;Lim, Gio-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1057-1061
    • /
    • 2002
  • Effects of modifier and soaking on extraction of triterpenoid saponin (glycyrrhizin) from liquorice were examined using supercritical $CO_2(SC-CO_2)$ at 50 MPa, $60^{\circ}C$, and flow rate of 3 mL/min, and glycyrrhizin content was analyzed by HPLC. Additon of undiluted methanol, ethanol or isopropanol as modifier to $SC-CO_2$ had little influence on extraction yield of glycyrrhizin. Soaking process using water increased the extraction yield as the sample to solvent ratio was increased. Addition of 70% methanol, ethanol or isopropanol to $SC-CO_2$ significantly increased the extraction yields, with 70% methanol resulting in the highest yield. When water at 90% (w/w) of sample weight was used for soaking, the extraction yield and rate increased, 70% ethanol-modified $SC-CO_2$ was almost equal to that obtained using 70% methanol.

Cooling Heat Transfer Characteristics of Carbon Dioxide in a Horizontal and Helically Coiled Tube (수평관과 헬리컬 코일관내 이산화탄소의 냉각 열전달 특성)

  • Son, Chang-Hyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.121-126
    • /
    • 2008
  • The cooling heat transfer coefficient of $CO_2$ (R-744) in a horizontal and helically coiled tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, evaporator and gas cooler (test section). The test section consists of a horizontal stainless steel tube and hellically coiled copper tube of 4.57 and 7.75 mm. The experiments were conducted at saturation temperature of 100 to $20^{\circ}C$, and mass flux of 200 to $500kg/m^2s$. The test results showed the variation of the heat transfer coefficient tended to decrease as cooling pressure of $CO_2$ increased. The heat transfer coefficient with respect to mass flux increased as mass flux increased. The experimental results were also compared with the existing correlations for the supercritical heat transfer coefficient, which generally underpredicted the measured data. However, the experimental data showed a relatively good agreement with the correlations of Pitla et al. except for the pseudo critical temperature.

Effects of Convective Velocity and Ambient Pressure on the Characteristics of Heptane Droplet Vaporization in Supercritical Environments (초임계상태에서 주위 유동 속도와 압력 변화에 따른 헵탄 액적의 기화 특성)

  • Lim, Jong-Hyuk;Lee, Bong-Su;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.71-78
    • /
    • 2005
  • The vaporization characteristics of a liquid heptane droplet in a supercritical nitrogen flow is numerically analyzed. The present model can account for real gas effects, liquid-phase internal circulation, variable thermodynamic properties and high-pressure effects. Time marching method with preconditioning scheme is employed to handle the low Mach number flows in dense heptane droplet region. Computations are made for the wide range of convective velocity and ambient pressure. Numerical results indicate that the droplet deformation becomes stronger by increasing the Reynolds number and it becomes relatively weak by increasing the pressure.

Research Activities about Characteristics of Fuel Injection and Combustion Using Endothermic Fuel (흡열연료를 이용한 연료분사 및 연소 특성 연구동향)

  • Choi, Hojin;Lee, Hyungju;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.73-80
    • /
    • 2013
  • Endothermic fuel utilizing technology is considered as a unique practical method of hypersonic vehicle for long distance flight. Research activities about characteristics of fuel injection and combustion using cracked by endothermic reaction are reviewed. Studies on characterization of supercritical fuel injection and mixing within supersonic flow field are surveyed. Researches on combustion characteristics such as ignition delay time, laminar burning velocity and combustion efficiency at supersonic model combustor are reviewed. In addition, domestic research activities on endothermic fuel are surveyed.

Performance analysis of S-CO2 recompression Brayton cycle based on turbomachinery detailed design

  • Zhang, Yuandong;Peng, Minjun;Xia, Genglei;Wang, Ge;Zhou, Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2107-2118
    • /
    • 2020
  • The nuclear reactor coupled with supercritical carbon dioxide (S-CO2) Brayton cycle has good prospects in generation IV reactors. Turbomachineries (turbine and compressor) are important work equipment in circulatory system, whose performances are critical to the efficiency of the energy conversion system. However, the sharp variations of S-CO2 thermophysical properties make turbomachinery performances more complex than that of traditional working fluids. Meanwhile, almost no systematic analysis has considered the effects of turbomachinery efficiency under different conditions. In this paper, an in-house code was developed to realize the geometric design and performance prediction of S-CO2 turbomachinery, and was coupled with systematic code for Brayton cycle characteristics analysis. The models and methodology adopted in calculation code were validated by experimental data. The effects of recompressed fraction, pressure and temperature on S-CO2 recompression Brayton cycle were studied based on detailed design of turbomachinery. The results demonstrate that the recompressed fraction affects the turbomachinery characteristic by changing the mass flow and effects the system performance eventually. By contrast, the turbomachinery efficiency is insensitive to variation in pressure and temperature due to almost constant mass flow. In addition, the S-CO2 thermophysical properties and the position of minimum temperature difference are significant influential factors of cyclic performance.

Effects of inlet working condition and heat load on supercritical CO2 compressor performance

  • Jinze Pei;Yuanyang Zhao;Mingran Zhao;Guangbin Liu;Qichao Yang;Liansheng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2812-2822
    • /
    • 2023
  • The supercritical carbon dioxide (sCO2) Brayton power cycle is more effective than the conventional power cycle and is more widely applicable to heat sources. The inlet working conditions of the compressor have a higher influence on their operating performance because the thermophysical properties of the CO2 vary dramatically close to the critical point. The flow in the sCO2 compressor is simulated and the compressor performance is analyzed. The results show that the sCO2 centrifugal compressor operates outside of its intended parameters due to the change in inlet temperature. The sCO2 compressor requires more power as the inlet temperature increases. The compressor power is 582 kW when the inlet temperature is at 304 K. But the power is doubled when the inlet temperature increases to 314 K, and the change in the isentropic efficiency is within 5%. The increase in the inlet temperature significantly reduces the risk of condensation in centrifugal compressors. When the heat load of the sCO2 power system changes, the inlet pressure to the turbine can be kept constant by regulating the rotational speed of compressors. With the increase in rotational speed, the incidence loss and condensation risk increase.