• Title/Summary/Keyword: supercritical CO2

Search Result 413, Processing Time 0.022 seconds

Experimental Effects of Aucklandiae Radix and Cyperi Rhizoma Extract on Chronic Stress in Rats (목향과 향부자 추출물이 흰쥐의 만성 스트레스에 미치는 실험적 효과)

  • Choi, Chan Hun;Hong, Jun Yeong;Jeong, Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.2
    • /
    • pp.54-58
    • /
    • 2022
  • This study aimed to investigate the anti-stress function of Aucklandiae Radix (AR) and Cyperi Rhizoma (CR). The essential oils used in the experiment were extracted from AR and CR using Steam Distillation Extraction and Super critical CO2 extraction. To observe the effects of sample administration, we measured feed intake, leukocytes, red blood cells, hemoglobin, platelets, serum serotonin content, immobility time, climbing time, and swimming time in mice subjected to chronic restraint stress as behavioral changes. The average body weight of all experimental groups increased than the average body weight of the control group. The immobility and climbing times of experimental groups A and B administered with supercritical extraction samples were shorter than those of the other experimental groups and the control group, and the swimming time was longer. The serotonin content in the blood of all experimental groups decreased compared to the normal group, and the serotonin content of the control group was increased. The authors suggest that Korean herbal medicines AR and CR may be utilized as anti-stress flavoring agents based on the above results.

Fatty Acid Composition and Oxidative Properties of Anchovy Oil Extracted by Supercritical Carbon Dioxide (초임계 이산화탄소를 이용하여 추출된 멸치 오일의 지방산 조성 및 산화 특성)

  • Lee, Seung-Mi;Yun, Jun-Ho;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.266-272
    • /
    • 2011
  • Anchovy oil was extracted using supercritical carbon dioxide ($SCO_2$) and organic solvents. Extraction was carried out at temperature range from 40 to $60^{\circ}C$, and pressure range from 15 to 25 MPa. The flow rate of $CO_2$ (22 $gmin^{-1}$) was constant entire the extraction period of 1.5 h. The fatty acid composition of anchovy oil was analyzed by gas chromatography (GC). The main fatty acids of anchovy oil were myristic acid, palmitic acid, stearic acid, palmitoleic acid, EPA (eicosapentaenoic acid), and DHA (docosahexaenoic acid). In addition, the oil obtained by $SCO_2$ extraction contained a higher percentage of polyunsaturated fatty acids especially EPA and DHA comparing to the organic solvent extracted oil. The oxidative stability of oils extracted from Anchovy by $SCO_2$ extraction was compared to those extracted by organic solvents. Results showed that the storage periods of oils obtained by $SCO_2$ extraction were longer than those of organic solvents extraction.

Parameter Calibration and Sensitivity Analysis for Numerical Modeling of Flow and Bed Changes near the Opening Gate for Sediment Release (배사구 유입부 흐름 및 하상변동 수치모의를 위한 매개변수 검정 및 민감도 분석에 관한 연구)

  • Jang, Eun-Kyung;Lim, Jong-Chul;Ji, Un;Yeo, Woon-Kwang
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1151-1163
    • /
    • 2011
  • The bed change analysis near the opening gate of a dam or weir to release deposited sediments have been conducted mostly using the numerical models. However, the use of unverified input parameters in the numerical model is able to produce the different results with natural and real conditions. Also, the bed changes near the opening gate of a dam or weir calculated with a numerical model could be varied depending on the geometry extent included the downstream area with supercritical flow in the model. In addition, the different time steps could provide different results in the bed change calculation, even though other conditions such as input parameters, geometries, and total simulation time were same. Therefore, in this study, hydraulic experiments were performed to validate the eddy viscosity coefficient which is the one of important input parameters in the RMA2 model and relevant to variation of simulation results. The bed changes were calculated using the SED2D model based on flow results calculated in the RMA2 model with the verified and selected eddy viscosity coefficient and also compared with experimental results. The bed changes near the opening gate were underestimated in the numerical model comparing with experimental results except only the numerical case without the modeling section of sediment release pipe and downstream area where the supercritical flow was produced. For the simulation of minimum time steps, different shapes of scour hole were produced in numerical and physical modeling.

Bubble-Point Measurement of Binary Mixture for the CO2 + Caprolactone Acrylate System in High Pressure

  • Jeong, Jong-Dae;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.826-831
    • /
    • 2019
  • Experimental data of phase equilibrium is reported for caprolactone acrylate in supercritical carbon dioxide. Bubble-point data was measured by synthetic method at temperatures ranging from (313.2 to 393.2) K and pressures up to 55.93 MPa. In this research, the solubility of carbon dioxide for the (carbon dioxide + caprolactone acrylate) system decreases as temperature increases at a constant pressure. The (carbon dioxide + caprolactone acrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + caprolactone acrylate) system was correlated with Peng-Robinson equation of state using mixing rule. The critical property of caprolactone acrylate was predicted with the Joback and Lyderson method.

Formation of Hydroxyapatite in Portland Cement Paste

  • Chung, Chul-Woo;Lee, Jae-Yong;Kim, Ji-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.68-75
    • /
    • 2014
  • In order to increase the integrity of the wellbore which is used to prevent the leakage of supercritical $CO_2$, it is necessary to develop a concrete that is strongly resistant to carbonation. In an environment where the concentration of $CO_2$ is exceptionally high, $Ca^{2+}$ ion concentration in pore solution of Portland cement concrete will drop significantly due to the rapid consumption of calcium hydroxide, which decreases the stability of the calcium silicate hydrate. In this research, calcium phosphates were used to modify Portland cement system in order to produce hydroxyapatite, a hydration product that is strongly resistant to carbonation under such an environment. According to the experimental results, calcium phosphates reacted with Portland cement to form hydroxyapatite. The formation of hydroxyapatite was verified using X-ray diffraction analyses with selective extraction techniques. When using dicalcium phosphate dihydrate and tricalcium phosphate, the 28-day compressive strength was lower than that of plain cement paste. However, the specimen with monocalcium phosphate monohydrate showed equivalent strength to that of plain cement paste.

Evaporation Heat Transfer Characteristics of Carbon Dioxide in a Diameter Tube of 4.57mm (내경 4.57mm 관내 CO2의 증발 열전달 특성)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.574-579
    • /
    • 2008
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of inner diameter of 4.57mm. The experiments were conducted at mass flux of 400 to $900kg/m^2s$, saturation temperature of 5 to $20^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed the heat transfer of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much. In comparison with test results and existing correlations, All of the existing correlations for the heat transfer coefficient underestimated the experimental data. However Jung et al.'s correlation showed a good agreement with the experimental data. Therefore, it is necessary to develope accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in horizontal tubes.

Measurement of Metal-Film Removal Rate in a Microemulsion Using QCM

  • Ju, Min-Su;Koh, Moon-Sung;Kwon, Yoon-Ja;Park, Kwang-Heon;Kim, Hong-Doo;Kim, Hak-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.121-128
    • /
    • 2006
  • A set of Quartz Crystal Microbalances (QCM's) was used to observe the film removal characteristics of three different $CO_2-nitric$ acid microemulsions. QCM's electroplated with nickel or copper were used as specimens. F-AOT, NP-4 and the newly synthesized Proline Surfactant-1 were used as surfactants to create microemulsions. While the F-AOT microemulsion yielded a relatively low removal rate, that of the Proline Surfactant-1 completely removed the Cu metal film within a short period of time. The NP-4 microemulsion removed the metal surface. However, removal rate measurements per QCM were not possible due to the instability of the microemulsion when Cu ions were present in the nitric solution. The reaction kinetics and metal removal capabilities of microemulsions formed by the different surfactants are explained along with the characteristics of reverse micelles.

Supercritical Fluid Extraction of Volatile Components from Strawberry (딸기의 휘발성 향기성분의 초임계 유체 추출)

  • Lee, Hae-Chang;Seo, Hye-Young;Shin, Dong-Bin;Park, Yong-Kon;Kim, Yoon-Sook;Ji, Joong-Ryong;Choi, Hee-Don
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.615-621
    • /
    • 2009
  • In order to optimize the supercritical fluid extraction (SFE) conditions of volatile components from the strawberry, we conducted an evaluation of the sample preparation and SFE operating conditions. The analysis of the volatile components extracted by a variety of sample preparation protocols led to the identification of 30, 26, 30, and 34 volatile components in fresh, freeze-dried, 30% celite and 70% celite treatments, respectively. The 70% celite treatment was the most effective in extracting the volatile components from strawberry via SFE. Analysis of the volatile components extracted by a variety of SFE operating conditions yielded identifications of 34, 35, 34, and 35 volatile components at 3,000 psi (40, $50^{\circ}C$) and 6,000 psi (40, $50^{\circ}C$), respectively. The extraction yield of alcohols and acids, and the total volatile component contents, were highest under conditions of 3,000 psi and $55^{\circ}C$. Volatile components from the strawberry were extracted via SFE, simultaneous steam distillation and extraction (SDE), and solvent extraction (SE). The analysis of the volatile components extracted via different extraction methods resulted in the identification of 56, 34, and 32 volatile components in the SDE, SFE, and SE extracts, respectively. The total volatile component contents identified in the SDE, SFE, and SE extracts were $20.268{\pm}1.144$, $21.627{\pm}1.215$ and $2.476{\pm}0.177\;mg/kg$, respectively. The SFE extract evidenced higher contents of sweet flavors such as 2-methylbutanoic acid, 2-methylpropanoic acid, and hexanoic acid than the SDE and SE extracts. SFE proved to be the most appropriate method for the extraction of fresh volatile components from the strawberry.

A Study of Dyeing Properties of Cotton Fabrics Under Supercritical CO2 Depending on Dyestuff : by C.I. Disperse orange 155, C.I. Disperse red 167 (초임계 유체 염색용 염료에 따른 면 섬유의 염색 특성 : C.I. Disperse orange 155, C.I. Disperse red 167)

  • Choi, Hyunseuk;Kim, Hunmin;Jeon, Taeyoung
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.93-101
    • /
    • 2022
  • In this study, the dyeing properties of supercritical fluid dyed cotton fabrics were investigated which use two types of dyes, such as C.I. Disperse orange and C.I. Disperse red 167. Dyeing temperature, pressure and leveling time were equally applied at 130 ℃, 250 bar, and 60 minutes with reference to the related literature, and experiments were performed at concentrations of 0.04, 0.1, 0.4 and 0.8 % o.w.f with different concentrations. Dyeability was confirmed through measurement of washing fastness and color coordinate, and a calibration curve of each dye was drawn up and the absorbance of the residual dye was measured to confirm the amount of residual dye and the dye exhaustion rate at the corresponding concentration. As a result of color difference measurement, as the concentration increased, the L* value decreased and the K/S value increased. However, as the concentration increased, the increase in K/S value decreased compared to the input amount, and this tendency was more obvious in C.I. Disperse red 167 than in C.I. Disperse orange 155. The dye exhaustion rate which was calculated by using the amount of residual dye in the pot was also C.I. Disperse orange 155 was 96.16 % and C.I. Disperse red 167 was 94.57 %. However, as the dyeing concentration increased, the dye exhaustion rate decreased, that C.I. Disperse orange was 95.33 % and C.I. Disperse red 167 was 90.63 %. As a result of the washing fastness test for both dyes, dyed samples of which concentrations were 0.4 and 0.8 % o.w.f decreased by 0.5 ~ 1.0 grade. This is predicted because the dye did not completely adhere to the amorphous region of the cotton fiber and the dye simply adsorbed. The fastness to rubbing also maintained at least grade 3-4 up to the 0.1 % o.w.f concentration, but at the concentration of 0.4 % o.w.f or higher, it fell to grade 1 or lower, showing a very poor friction fastness.

Enhancing Carbon Dioxide Storage Efficiency in Aquifers through Surfactant Application (계면활성제 활용에 따른 공극 규모 이산화탄소 저장 효율 향상)

  • Gang, Seokgu;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.63-70
    • /
    • 2023
  • Underground carbon dioxide (CO2) storage emerges as a pivotal strategy for mitigating atmospheric CO2 emissions and addressing global warming concerns. This study investigates techniques to optimize storage efficiency in aquifers, which stand out for their superior capacity compared to other geological layers. The focus is on the application of nonionic and anionic surfactants to enhance CO2 storage efficiency within confined spaces. A specialized micromodel facilitating fluid flow observation was employed for the evaluation. Experimental results revealed a noteworthy minimum 40% increase in storage efficiency at the lowest injection rate when utilizing nonionic and anionic surfactants, in comparison to pure water injection. Interestingly, no significant variations in storage efficiency were observed based on the ionicity and concentration of the surfactants under investigation. These findings have implications for guiding the selection and concentration determination of surfactants in future underground CO2 storage endeavors.