• Title/Summary/Keyword: superconducting thick-film wire

Search Result 14, Processing Time 0.028 seconds

Effects on Suspension Solution for Electrophoretic Superconducting Thick-film Wire (전기영동 초전도 후막선재의 현탁용매 영향)

  • 소대화;박정철;이영매;조용준;코로보바
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.81-84
    • /
    • 1999
  • For the research of the effects on suspension solution with YBCO and BSCCO for elcectrophoretic deposition to prepare superconducting thick-film wire, it was investigated that the preheating technique for the superconducting powders in vacuum system was used with various solvent solutions of acetone, ethanol, toluene and buthanol for electrophoresis. As a result it was useful to remove the influence of remaining and adsorbed solvent solution which was existed between and on the particle surfaces when the specimens of superconducting wire by electrophoresis were treated in vacuum of 10$\^$-3/ Torr and temperature around 200$^{\circ}C$ in bell-jar system. From the prepared superconducting wire samples, the critical current density, Jc was measured by 4-point prove method in liquid N$_2$ at the value of 10$\^$3/ to 10$\^$4/ A/$\textrm{cm}^2$, respectively, for the YBCO and BSCCO superconducting wires.

  • PDF

Preparation of YBCO Superconducting Wire by Electrophoresis (전기영동법에 의한 YBCO 초전도 선재 제조 (I))

  • 박정철;이명매;소대화;단옥교
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.570-574
    • /
    • 1999
  • In this paper, by using the electrophoresis, preparation of YBCO superconducting wire deposited on metal Ag base wire was studied with its Properties. YBCO Powder could be prepared by solid state reactions with calcining and sintering processes. Superconducting wire prepared on metal Ag wire used as cathode of deposition base could be also fabricated in the YBCO/acetone-dispersed solution to obtain several tens of re thick films. And then it could be used as superconducting wire for measurement after calcination, sintering and oxygen absorption processes. In the process of film deposition, a catalyst I$_2$added into the suspension solution was very useful for preparing thick film of YBCO, and BaF$_2$ of additive material was also necessary for preparing crack-free wire of YBCO superconductor. As a result, YBCO superconducting wire added 2~3wt.% of BaF$_2$\ulcorner with catalyst, 12 had better deposition condition for uniform and dense YBCO wires, and critical current density, Jc was calculated at the value of 1,458A/$\textrm{cm}^2$(more than 10$^{3}$A/$\textrm{cm}^2$ ,77K, o[T]) of 30${\mu}{\textrm}{m}$ thick sample by 4 point prove method.

  • PDF

Influence of PEG addition on the surface properties of YBCO Thick Films (PEG 첨가에 의한 YBCO 후막 표면 변화)

  • Soh, Dea-Wha;Jeon, Yong-Woo;Cho, Yong-Joon;Korobova, Natalya
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.53-56
    • /
    • 2003
  • The properties of YBCO thick film coated on Ag wire with YBCO powder is deeply affected by cracking on its surface which was deposited in organic solution by electrophoretic method. YBCO superconducting thick films were prepared on Ag wire$({\Psi}0.8mm)$ by electrophoresis in acetone with added PEG (Poly-Ethylene Glycol, 3% in Acetone), 1ml for being crack-free. The surface properties of YBCO superconducting wire was evidently improved with adding PEG. Added PEG which molecular weight is 600, 1000, 3400 was affected with variation of deposition voltages to the surface properties of samples. As a result, with adding PEG (its molecular weight is 3400), YBCO superconducting wire was better on its surface properties.

  • PDF

2G HTS wire with enhanced engineering current density attained through the deposition of HTS layer with increased thickness

  • Markelov, A.;Valikov, A.;Chepikov, V.;Petrzhik, A.;Massalimov, B.;Degtyarenko, P.;Uzkih, R.;Soldatenko, A.;Molodyk, A.;Sim, Kideok;Hwang, Soon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.29-33
    • /
    • 2019
  • 2G HTS wire with high engineering current density is desired for applications where compact, high power density superconducting equipment is important. We have succeeded in enhancing engineering current density of commercial SuperOx 2G HTS wire based on GdBCO by increasing the HTS layer thickness without fast degradation of the HTS film microstructure. This was possible after improving the temperature uniformity along the HTS film deposition zone. In particular, the wire engineering current density was increased from 700-770 A/㎟ (for a 65 ㎛-thick wire without stabilisation) or 430-480 A/㎟ (for a 105 ㎛-thick stabilised wire) at the beginning of this study to almost 1200 A/㎟ (for a 67 ㎛-thick wire without stabilisation) or 770 A/㎟ (for a 107 ㎛-thick stabilised wire) at completion of this study.

Electrophoretic deposition of Bi2223 Superconductor Thick Film (Bi2223 초전도후막의 전기영동전착 특성)

  • Jeon, Yong-Woo;Soh, Dea-Wha;Choi, Sung-Jae;Park, Jung-Cheul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.97-100
    • /
    • 2004
  • In this paper, the preparation of BSCCO superconducting wire by electrophoretic deposition method and the effect of suspension medium used with various solvent solutions of ethanol and buthanol for electrophoretic deposition were studied. The preheating technique in vacuum system for the superconducting powders coated on Ag wire was also investigated. As a result, it was confirmed that the preheating technique was very useful to remove the influence of remains affected to the surface conditions of superconducting wire. And the adsorbed solvent solution which was existed between and on the deposited particle surfaces was almost disappeared at the treating conditions of about $10^{-3}$ Torr and around $200^{\circ}C$ in bell-jar system. By measurement of 4-point prove method, the critical current density($J_c$) of BSCCO superconducting wire was obtained at the value of more than $10^4\;A/cm^2$ in liquid $N_2$(77 K, 0 T).

  • PDF

Control of Cracking on Superconducting Wire by Electrophoresis (전기영동 초전도 선재의 크랙발생 억제)

  • 소대화;이영매;조용준;김태완;박정철;코로보바나탈리아
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.270-273
    • /
    • 2000
  • For the well-preparation of the superconducting wire by electrophoresis, the control of the cracking on the YBCO, BSCCO superconductor deposited on Ag wire in acetone and buthanol solution with PEG(poly-ethylenglycol) was investigated with XRD and SEM analysis. After deposition, drying and heat treatment process, the cracks on the deposited surface of YBCO and BSCCO samples was clearly removed and decreased, which was perpared in suspension with addition of PEG from 1 to 3ml. However, in the case of the addition rate of PEG in acetone suspension was exceeded in 3ml, BSCCO superconductor deposited on Ag wire was slightly melted at 90$0^{\circ}C$ which was the same heat treatment condition of other samples with different additin rate of PEG. In the process of electrophoretic deposition, drying and heat treatment, PEG added into the suspension solution as a binder was very useful to prepare the crack-free thick film-wire of YBCO and BSCCO.

  • PDF

Electrophoretic Deposition of YBCO powder in mixed suspension solution of iso-prophanol and iso-buthanol (이소프로판올과 이소부탄을 용매에서의 YBCO 분말 영동전착)

  • ;;;Korobova N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.288-291
    • /
    • 2001
  • It is very important to select suspension solution for forming electrophoretic deposited YBCO thick film, because it is heavily affected to its superconducting properties. In this paper, high-temperature superconductor films of YBa$_2$Cu$_3$$O_{7-x}$ were fabricated by electrophoretic deposition (EPD) from alcohol-based suspension such as iso-propanol, iso-butanol, and their mixture. For the formation of YBCO dense and adherent coating on a silver wire by EPD, 1% PEG(1000) 2 $m\ell$, as a additive for making their surface crack-free, was used for electrophoresis. As a results, the cracks were considerably decreased and the superconducting critical current density (J$_{c}$) without/with PEG was 1200 A/$\textrm{cm}^2$ and 2020 A/$\textrm{cm}^2$, which films deposited in mix ism-propanol and iso-butanol suspension.ion.

  • PDF

Critical Current Density Improvement of Superconducting YBCO Thick Film by using EPD Additives (전착 첨가물에 의한 전기영동 초전도 YBCO 후막선재의 임계전류밀도 개선)

  • Soh, Dea-Wha;Lim, Byong-Jae;Jeon, Yong-Woo;Park, Jung-Cheul;Choi, Sung-Jai
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.123-126
    • /
    • 2003
  • The electrophoretic deposition method using the suspension solution with additives under the electric potential was applied for the fabrication of YBCO superconductor wire. This method was able to simplify the fabrication facilities, and produce an uniform and dense thick film. To improve the critical current density of deposited films, the additive PEGs(Poly Ethylene Glycole) with the molecular weight of 600, 1000 and 3400, were used as chemical binders for the suspension solution. The organic additive PEG showed better effects to the properties of YBCO superconductor wire. The PEG improved the adhesion between superconductor particles and suppressed the crack on the surface, which enhanced the surface uniformity and density of YBCO deposited film. It was found that acetone suspension solution showed better deposition properties than the others. The samples fabricated in the solution with the additive, 8 vol.% of 1% PEG(1000), showed the highest critical current density measured as $2300{\sim}2400\;Acm^2$ at 77 K, 0 T.

  • PDF

Electrophoretic Deposition of YBCO powder in mixed suspension solution of iso-prophanol and iso-buthanol (이소프로판올과 이소부탄올 용매에서의 YBCO 분말 영동전착)

  • Soh, Dae-Wha;Li, Ying-Mei;Park, Jung-Cheul;N., Korobova
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.288-291
    • /
    • 2001
  • It is very important to select suspension solution for forming electrophoretic deposited YBCO thick mm, because it is heavily affected to its superconducting properties. In this paper, high-temperature superconductor films of $YBa_{2}Cu_{3}O_{7-x}$ were fabricated by electrophoretic deposition (EPD) from alcohol-based suspension such as iso-propanol, iso-butanol, and their mixture. For the formation of YBCO dense and adherent coating on a silver wire by EPD, 1 % PEG(1000) 2 ml, as a additive for making their surface crack-free, was used for electrophoresis. As a results, the cracks were considerably decreased and the superconducting critical current density $(J_e)$ without/with PEG was $1200A/cm^2$ and $2020A/cm^2$, which films deposited in mix iso-propanol and iso-butanol suspension.

  • PDF

Surface Properties of Superconducting Thick Film with Suspension Solution added with Polymer (폴리머를 첨가한 현탁용매에 따른 초전도 후막의 표면특성)

  • 소대화;이영매;임병제;김태완;전용우;코로보바나탈리아
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.503-506
    • /
    • 2000
  • YBCO superconducting thick films were prepared on Ag wire by electrophoresis in acetone and ethanol with chemically modified suspension. The addition of organic compounds, such as PEG, EG into suspension solution for improving critical current density was investigated. Surface state, deposition condition, pore distribution and cracks were investigated by using SEM photographs. Controlling preparation conditions were studied for reducing these defects. As a results, in acetone solution, the surface crack of samples was decreased with increasing PEG. On the contrary, the surface crack of sample was increasing with increasing the amount of EG. In ethanol solution without I$_2$, which was generally used for an electrolyte, the deposition time was longer than this of acetone. For that reason the sample deposition in ethanol time was needed with enough stirring time for suspending YBCO powder and deposition time.

  • PDF