• Title/Summary/Keyword: superconducting proximity effect

Search Result 15, Processing Time 0.027 seconds

Suppression of superconductivity in superconductor/ferromagnet multilayers

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.33-36
    • /
    • 2016
  • Suppression of the superconducting transition temperature ($T_c$) of NbN thin films in superconductor/ferromagnet multilayers has been investigated. Both superconducting NbN and ferromagnetic FeN layers were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. The thickness of FeN films was fixed at 20 nm, while the thickness of NbN films was varied from 3 nm to 90 nm. $T_c$ suppression was clearly observed in NbN layers up to 70 nm thickness when NbN layer was in proximity with FeN layer. For a given thickness of NbN layer, the magnitude of $T_c$ suppression was increased in the order of Si/FeN/NbN, Si/NbN/FeN, and Si/FeN/NbN/FeN structure. This result can be used to design a spin switch whose operation is based on the proximity effect between superconducting and ferromagnetic layers.

Superconducting proximity effects in Sb-doped Bi2Se3 topological insulator nanoribbon

  • Park, Sang-Il;Kim, Hong-Seok;Hou, Yasen;Yu, Dong;Doh, Yong-Joo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.13-18
    • /
    • 2019
  • Superconducting junctions of topological insulator (TI) are expected to host Majorana bound state, which is essential for developing topological quantum information devices. In this study, we fabricated Josephson junctions (JJs) made of Sb-doped Bi2Se3 TI nanoribbon and PbIn superconducting electrodes. In the normal state, the axial magnetoresistance data exhibit periodic oscillations, so-called Aharonov-Bohm oscillations, due to a metallic surface state of TI nanoribbon. At low temperature of 1.5 K, the TI JJ reveals the superconducting proximity effects, such as the critical current and multiple Andreev reflections. Under the application of microwave, integer Shapiro steps are observed with satisfying the ac Josephson relation. Our observations indicate that highly-transparent superconducting contacts are formed at the interface between TI nanoribbon and conventional superconductor, which would be useful to explore Majorana bound state in TI.

Superconducting Junctions of InAs Semiconductor Nanowires

  • Doh, Yong-Joo;Franceschi, Silvano De;van Dam, Jorden A.;Bakkers, Erik P. A. M.;Kouwenhoven, Leo P.
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.136-139
    • /
    • 2008
  • InAs semiconductor nanowires can provide a promising platform to integrate superconducting quantum circuit, which exploits tunable supercurrent under the operation of gate voltage. We report temperature and magnetic field dependence of the nanowire superconducting junctions, which is in agreement with the proximity-effect theory of superconductor-normal metal-superconductor weak link. Superconducting coherence length of the InAs nanowire is estimated from the fit and magnetic-field dependence of the critical current and the subgap structure of dI/dV is discussed as well.

  • PDF

Superconductivity on Nb/Si(111) System : scanning tunneling microscopy and spectroscopy study

  • Jeon, Sang-Jun;Suh, Hwan-Soo;Kim, Sung-Min;Kuk, Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.390-390
    • /
    • 2010
  • Superconducting proximity effects of Nb/Si(111) were investigated with scanning tunneling microscopy(STM) and scanning tunneling spectroscopy(STS). A highly-doped($0.002\;{\omega}{\diamondsuit}cm$) Si wafer pieces were used as substrate and Nb source was thermally evaporated onto the atomically clean silicon substrate. The temperature of the silicon sample was held at $600^{\circ}C$ during the niobium deposition. And the sample was annealed at $600^{\circ}C$ for 30 minutes additionally. Volmer-Weber growth mode is preferred in Nb/Si(111) at the sample temperature of $600^{\circ}C$. With proper temperature and annealing time, we can obtain Nb islands of lateral size larger than Nb coherence length(~38nm). And outside of the islands, bare Si($7{\times}7$) reconstructed surface is exposed due to the Volmer-Weber Growth mode. STS measurement at 5.6K showed that Nb island have BCS-like superconducting gap of about 2mV around the Fermi level and the critical temperature is calculated to be as low as 6.1K, which is lower than that of bulk niobium, 9.5K. This reduced value of superconducting energy gap indicates suppression of superconductivity in nanostructures. Moreover, the superconducting state is extended out of the Nb island, over to bare Si surface, due to the superconducting proximity effect. Spatially-resolved scanning tunneling spectroscopy(SR-STS) data taken over the inside and outside of the niobium island shows gradually reduced superconducting gap.

  • PDF

Proximity Effect in Nb/Gd Layers

  • Jung, Dong-Ho;Char, K.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.110-113
    • /
    • 2011
  • We have grown a Nb/Gd bilayer on a$SiO_2$/Si substrate by using a DC magnetron sputtering system, which was fabricated in situ with silicon stencil masks. In order to investigate proximity effect of the Nb/Gd bilayer, we used a planar tunnel junction with an AlOx tunnel barrier by oxidizing the Al ground electrode at the bottom. A $Co_{60}Fe_{40}$ backing of Al was deposited so as to reduce the superconductivity of the Al, ensuring a normal counterelectrode. With a 50-nm-thick Nb layer, we have measured dI/dV (dynamic conductance) by varying the thickness of Gd, which can reveal the density of states (DOS) of the Nb/Gd bilayer as a function of the Gd thickness resulting from the proximity effect of a superconductor/ferromagnet bilayer (S/F). The SF proximity effect in Nb/Gd will be discussed in comparison to our previous results of the CoFe/Nb, Ni/Nb and CuNi/Nb proximity effect; Gd is expected to show different effects since Gd has f-electrons, while CoFe, Ni, and CuNi have only d-electrons. Our studies will focus on the triplet correlation in a superconducting pair.

Growth and properties of LCMO/YBCO heterostructure

  • Kumar, Manish;Lee, Hyun Hwi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.151.1-151.1
    • /
    • 2016
  • Complex oxide heterointerfaces have been extensively explored in the past due to the novel phenomenon emerging at such interfaces that differ from their individual bulk counterparts. The integration of a ferromagnetic (FM) material with the superconducting (SC) material leading to proximity effect is one of the commonly studied phenomenon in these heterostructures. In continuation, we have stabilized the FM layer La0.7Ca0.3MnO3 (LCMO) on SC material YBa2Cu3O7-${\delta}$ (YBCO) using pulsed laser deposition technique and explored the structural, magnetic, electrical and magneto-transport properties of this heterostructure. ${\Phi}$-scan measurements confirm the epitaxial nature of LCMO/YBCO heterostructure grown on single crystalline SrTiO3 substrate. The FM transition of LCMO and SC transition of YBCO are observed in the magnetization measurements of the bilayer structure. Through electrical measurements, we understood that the proximity effect leads to lowering of the SC transition of YBCO. The role of interface in the bilayer structure is also realized through electrical transport measurements.

  • PDF

Gate-tunable Supercurrent in Graphene-based Josephson Junction (그래핀 조셉슨 접합에서 초전류의 게이트 전압 의존성)

  • Jeong, D.;Lee, G.H.;Doh, Y.J.;Lee, H.J.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.47-51
    • /
    • 2011
  • Mono-atomic-layer graphene is an interesting system for studying the relativistic carrier transport arising from a linear energy-momentum dispersion relation. An easy control of the carrier density in graphene by applying an external gate field makes the system even more useful. In this study, we measured the Josephson current in a device consisting of mono-layer graphene sheet sandwiched between two closely spaced (~300 nm) aluminum superconducting electrodes. Gate dependence of the supercurrent in graphene Josephson junction follows the gate dependence of the normal-state conductance. The gate-tunable and relatively large supercurrent in a graphene Josephson junction would facilitate our understanding on the weak-link behavior in a superconducting-normal metal-superconducting (SNS) type Josephson junction.

Development of Superconducting Transition Edge Sensors for Gamma Ray Detection (감마선 검출을 위한 초전도 상전이 센서)

  • Lee, Young-Hwa;Kim, Yong-Hamb
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.162-166
    • /
    • 2008
  • We are developing a sensitive gamma ray spectrometer based on superconducting transition edge sensors. The detector consists of a small piece of high purity Sn as an absorber and a Ti/Au bilayer as a temperature sensor. It is designed to measure the thermal signal caused by absorption of gamma rays. The mechanical support and the thermal contact between the absorber and the thermometer were made with Stycast epoxy. The bilayer was formed by e-beam evaporation and patterned by wet etching on top of a $SiN_X$ membrane. A sharp superconducting transition of the film was measured near 100 mK. When the film was biased to the edge of the transition, signals were observed due to single photon absorption emitted from an $^{241}Am$ source. The measured spectrum showed several characteristic peaks of the source including 59.5 keV gamma line. The full with at half maximum was about 900 eV for the 59.5 keV gamma line. The background was low enough to resolve low energy lines. Considerations to improve the energy resolution of the gamma ray spectrometer are also discussed.

  • PDF