• Title/Summary/Keyword: superconducting power machine

Search Result 40, Processing Time 0.018 seconds

Superconducting Synchronous Motor Design considering Machine Losses (손실을 고려한 초전도 동기전동기 설계)

  • 백승규;손명환;김석환;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.21-26
    • /
    • 2001
  • Superconducting synchronous generators and motors are designed based on 2 dimensional electro-magnetic approach. In the case of generator, if the machine output rating and terminal voltage are decided the armature rating current will be decided automatically according to its power factor. However, in the case of motor, if the output rating is given with [hp] or [kw] units, the armature terminal voltage and current are not decided directly because the machines armature input power and mechanical output are different by way of losses. So in order to calculate the armature current more accurately. the machine losses must be included in the design procedure. In this paper the machine loss of superconducting motor are analyzed and used for decision of the armature input power and current. Moreover, the differences of voltage equations between superconducting synchronous generator and motor are considered.

  • PDF

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

Design, Manufacture and Characteristic Experiment of a Superconducting power Supply with Superconducting Excitation Coil (초전도여자기를 이용한 초전도전원장치의 설계.제작 및 특성해석)

  • Chu, Yong;Kim, Ho-Min;Yoon, Yong-Soo;Ko, Tae-Kuk;Han, Tae-Su
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.1
    • /
    • pp.14-18
    • /
    • 2000
  • This paper describes a series of experiments to investigate the operational characteristics of a superconducting power supply with superconducting excitation coil. In this experiment, the superconducting excitation coil is introduced to control the pole-flex in the air gap of the machine. The operating current of the superconducting powder supply is designed to have the value of 300 [A] for the rotational speed of 600 rpm. Sensors installed on the Nb sheet yield the information on the spatial and temporal behaviors of the magnetic field in spot and on the characteristics of the superconducting power supply.

  • PDF

The Fabrication and Operational Characteristics of a Novel Type Superconducting Power Supply for Persistent Current Mode (새로운 형태의 영구전류모드용 초전도 전원장치의 제작 및 운전특성)

  • Kim, Ho-Min;Yun, Yong-Su;Go, Tae-Guk;Han, Tae-Su;Jang, Seung-Chan;O, Sang-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.771-777
    • /
    • 2000
  • This paper deals with the design and fabrication of a novel superconducting power supply system, and characteristics have been investigated through experiments. Superconducting power supply consists of rotating and static parts, and superconducting magnet. In this experiment, superconducting foils were placed in parallel within the static part of the machine, pumping currents were measured with respect to rotor speeds and excitation currents. In addition, in order to observe the rotating flux distribution in the superconducting foils, several hall-sensors were placed in it. With the flux distribution acquired, effect of the flux on the superconducting foil during the process of current pumping has been discussed. Also, the general operational characteristics of the superconducting power supply system have been investigated on the basis of the current and voltage data, and magnetic field values acquired through the experiments.

  • PDF

The Stability Analysis of Power System Installed Superconducting Fault Current Limiter (고온 초전도 한류기가 설치된 전력 시스템의 안정도 해석)

  • Lee, Seung-Je;Lee, Chan-Ju;Go, Tae-Guk
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.227-232
    • /
    • 1999
  • The stability of Power system installed Hi-Tc Superconducting Fault Current Limiter(SFCL) is analyzed as a process of developing SFCL. For investigation, a simple mimic system(only one generator) is assumed and then the circuit with SFCL in that system is solved for transient performance. In case the SFCL is installed in the power system, it protected synchronization more effectively both in symmetrical 3-phase fault and single phase line to ground fault in that the machine remains in synchronism for the more time than of without superconducting fault current limiter. It shows that the superconducting fault current limiter not only limits fault current but also protest synchronism. So for design of this SFCL, its synchronism protection property must be considered.

  • PDF

3-D Magnetostatic Finite Element Simulation of a Low-Tc Superconducting Power Supply with Respect to the Excitation Current (여자전류에 따른 저온초전도전원장치의 3차원 정자계 유한요소 시뮬레이션)

  • Bae, Deok-Gwon;Kim, Ho-Min;Lee, Chan-Ju;Yun, Yeong-Su;Lee, Sang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.364-369
    • /
    • 2002
  • In this paper, 3-D magnetostatic finite element simulation of a rotux type Low-Tc superconducing (LTS) superconducting power supply, finite element method, cryogenic system, superconducting foil by generated magnetic flux from the rotating pole. The magnetic flux density on the superconducting foil caused by two exciters is therefore sufficiently greater than its critical magnetic flux density and it is an essential point in LTS power supply design. To establish the sufficient flux path of this machine, ferromagnetic materials is used in this power supply. When ferromagnetic materials is used at extremely low temperature, its characteristic of magnetization differs to that at room temperature. For this reason, special consideration is needed in the magnetic analysis of cryogenic systems. When the excitation current is 10A, the normal spot appears on superconducting foil. The results of this analysis are calculated and compared with the experimental results. The linkage flux due to the excitation current of 10, 20, 30, 40 and 50A are respectively $1.30{\times}10-4$, $2.67{\times}10-4$, $5.08{\times}10-4$ and $6.15{\times}10-4Wb$.

The Analysis of Operating Charateristic of a Rotating Flux type superconducting Power supply with a parallel-sheets (병렬 구조 초전도박막을 이용한 회전 자속형 저온 초전도전원장치의 동작 특성 해석)

  • Kim, Ho-Min;Bae, Joon-Han;Yoon, Yong-Soo;Chu, Yong;Sim, Ki-Deok;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.337-339
    • /
    • 1998
  • This paper deals with the design and fabrication of a novel superconducting power supply system, and characteristics have been analyzed through experiments. Superconducting power supply consists of rotating and static parts, and superconducting magnet. In this experiment, the current-pumping characteristics have been analyzed with superconducting sheets placed in parallel within the static part of the machine. In addition, in order to observe the 3-dimensional flux distribution in the superconducting sheet, several hall-sensors were placed in it. With the flux distribution acquired, the effect of the flux on the superconducting sheet during the process of current pumping have been analyzed. Also, general operational characteristics of the superconducting power supply system have been investigated on the basis of the current and voltage data and magnetic field values acquired through the experiments. In this experiment, maximum pumping current has been achieved to about 1280 amps.

  • PDF

The Design, Fabrication and Chacteristic Experiment of a novel type Superconducting Power Supply for Persistant Current mode (새로운 형태의 영구전류모드용 초전도 전원장치의 설계. 제작 및 동작특성 실험)

  • Kim, Ho-Min;Chu, Yong;Yoon, Yong-Soo;Yang, Jun-Young;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.244-246
    • /
    • 1999
  • This paper deals with the design and fabrication of a novel superconducting power supply system, and characteristics have been analyzed through experiments. Superconducting power supply consists of rotating and static parts, and superconducting magnet. In this experiment, the current pumping characteristics have been analyzed with superconducting sheets placed in parallel within the static part of the machine. In addition, in order to observe the rotating flux distribution in the superconducting sheet, several hall-sensors were placed in it. With the flux distribution acquired, the effect of the flux on the superconducting sheet during the process of current pumping have been analyzed. Also, general operational characteristics of the superconducting power supply system have been investigated on the basis of the current and voltage data, and magnetic field values acquired through the experiments.

  • PDF

Design Considerations of 2-pole Synchronous Superconducting Rotating Machine (2극 초전도 동기기 설계법 고찰)

  • Baik, S.K.;Sohn, M.H.;Lee, E.Y.;Kwon, Y.K.;Ryu, K.S.;Jo, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.865-867
    • /
    • 2001
  • Generally large synchronous rotating machines with 2 poles have more merits than the others with more than 2 poles Superconducting synchronous rotating machines also have the same tendency, but they have different structure from conventional ones because of no magnetic core inside of the rotor. As the result, design approaches of the superconducting field coils are also different, which would be classified into 2 types according to their coil shapes. The first one is race-track type and the other is saddle type Race-track type machines have almost the same structure with conventional salient pole generators which are being used as largely small scale machines with more than 2 poles. On the other hand saddle type machines correspond to conventional cylindrical generators with 2 poles used for large turbine system in power plants. In this paper several types of superconducting field coils are introduced for 2 pole superconducting machine design and then the feasibility of each type is considered. Moreover, based on the consideration. 1MVA superconducting generator(S.G.) with saddle type field coil is designed electromagnetically.

  • PDF

A Prospect of the Superconductivity Research of the Industrial Application (초전도 산업응용기술의 연구동향 및 발전방향)

  • Kwon, Young-Kil
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.18-21
    • /
    • 1999
  • This paper is to present the general descriptions and their research trend of MRl/NMR which has already commercialized and also is more successful than any other applications of superconducting magnet, Superconducting Single Crystal Growing Equipment and Superconducting Magnetic Separation technology which are practically used in the related areas, and power electric application machine, which is the most effective and efficient one among the applications using high magnetic field. Therefore, it is hoped that this study will help to establish the ground of the industrial application of superconductivity in Korea.

  • PDF