• Title/Summary/Keyword: superconducting elements

Search Result 140, Processing Time 0.027 seconds

Increase of voltage ratings in the superconducting fault current limiter using thin films by shunt resistors (션트저항을 통한 박막형 초전도 한류기의 전압등급 증대)

  • 최효상;김혜림;황시돌;박권배;현옥배
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.176-177
    • /
    • 2001
  • Three nearly identical superconducting fault current limiters (SFCLs) were connected in series to increase the voltage ratings. A slight difference in the quench starting point of individual SFCL units produced significantly imbalanced power distribution when connected in series. The imbalance was successfully removed by connecting a shunt resistor to one SFCL in parallel. 1.2 kV SFCL was designed with five current limiting elements and two or three shunt resistors.

  • PDF

Increase of resistive type superconducting fault current limiter capacity (박막 저항형 초전도 한류기의 용량증대를 위한 방안)

  • Cha, Sang-Do;Kim, H.R.;Choi, H.S.;Hyun, O.B.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.790-792
    • /
    • 2002
  • The resistive type superconducting fault current limiter(SFCL) is a current limiter using the Quench mechanism of superconductors. When Quench occurs in superconductors, the resistance of superconductors increases abruptly. In order to increase SFCL capacity, current limiting elements were connected in series. If the Quench current of each element was different, voltage distribution was imbalanced. This imbalance could be removed by arrangement including series and parallel connection of elements. Based on this result, an SFCL of 1.8kV/50A was designed and experimented, expecially, in terms of increasing the voltage rating.

  • PDF

Study on the Necessity for Limiting Impedance of Superconducting Fault Current Limiter Considering Protective Coordination of power distribution (배전보호협조를 고려한 초전도 한류임피던스 제한에 필요성 연구)

  • Ahn, Jae-Min;Kim, Jin-Seok;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.34-36
    • /
    • 2008
  • In this paper, we study on the necessity for limiting impedance of Superconducting Fault Current Limiter(SFCL) considering protective coordination. Several countermeasures have been proposed to protect the power system effectively from the larger fault current. Among them, the SFCL has been expected as one of the most effective solutions. However, the application of SFCL into power system can cause some problems, such as non-operation of instantaneous elements, of protective coordination because of limiting fault current. So we suggest that impedance of SFCL is must limited for operation of instantaneous elements. 'This method is essential to introduce application of SFCL into power distribution system.

  • PDF

Analysis on Current Limiting and Recovery Characteristics of a SFCL Dependent on Magnetic Coupling of Shunt Reactors (션트리액터의 자기결합유무에 따른 초전도전류제한기의 전류제한 및 회복특성 분석)

  • Lim, Sung-Hun;Ahn, Jae-Min;Kim, Jin-Seok;Moon, Jong-Fil;Kim, Jae-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.277-279
    • /
    • 2008
  • The current limiting and recovery characteristics of a superconducting fault current limiter (SFCL) using shunt reactors were analyzed. Generally, the shunt reactor has a role to distribute the even voltage drop between high-Tc superconducting (HTSC) elements comprising the SFCL. However, the shunt reactors magnetically separated was not contributed to the equal voltage distribution between the HTSC elements. Through the experiments for the SFCL with both the magnetically coupled and magnetically uncoupled shunt reactors, the magnetically coupled shunt reactors were confirmed to improve the current limiting and recovery characteristics of the SFCL.

  • PDF

A Study on the Dielectric Characteristics of GFRP in LN2 under Lightning Impulse Voltage According to Pressure (액체질소 내에서 뇌 임펄스전압에 대한 압력별 GFRP의 절연파괴 특성 분석)

  • Hong, Jong-Gi;Heo, Jeong-Il;Nam, Seok-Ho;Kang, Hyoung-Kul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1471-1476
    • /
    • 2012
  • A study on the dielectric characteristics of the Glass Fiber Reinforced Plastic (GFRP) is important for designing a reliable high voltage superconducting machines such as transmission superconducting fault current limiters, superconducting cables, and superconducting transformers. In this paper, dielectric experiments of the GFRP under lightning impulse voltage are conducted in liquid nitrogen($LN_2$) according to various experimental conditions such as the thicknesses of the GFRP, the diameters of electrode systems and the pressures. The dielectric characteristics of the GFRP are analyzed by using a Finite Elements Method(FEM) according to various field utilization factors. It has been reported that the electrical insulation design of the GFRP would be conducted by considering the mean electric field intensity($E_{mean}$) distributed inside the GFRP. In this study, it is found that the dielectric performance of the GFRP could be explained by not only $E_{mean}$ but also the maximum electric field intensity ($E_{max}$). Finally, the empirical formulae of the GFRP to estimate an electrical breakdown voltage at sparkover under the lightning impulse condition are deduced. It is expected that the presented experimental results in this paper are helpful to design electrically reliable high voltage superconducting machines using the GFRP as an insulation material.

Analysis on Current Limiting Characteristics of a Superconducting Fault Current Limiter (SFCL) with a Peak Currnt Limiting Function (피크전류제한 기능을 갖는 초전도한류기의 전류제한 특성분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.47-51
    • /
    • 2011
  • The superconducting fault current limiter (SFCL) with a peak current limiting function according to the initial fault current with the different amplitudes was suggested. The proposed SFCL, which consists of two limiting components, causes only the first superconducting element among two limiting components to be quenched in case that the initial fault current with the lower peak amplitude happens. On the other hand, the initial fault current with the higher peak amplitude makes both the superconducting elements of two limiting components to be quenched, which contributes to the peak current limiting function of the SFCL. To confirm the fault current limiting operation of the proposed SFCL, the short-circuit tests of the SFCL according to the fault angle were carried out and its effective fault current limiting operations could be discussed.

Characteristics of a FCL Applying Fast Interrupter According to the Current Limitation Elements (고속 인터럽터를 적용한 한류기의 전류제한요소에 따른 특성)

  • Im, In-Gyu;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1752-1757
    • /
    • 2012
  • With the development in industry, power demand has increased rapidly. As consumption of power has increased, Demand for new power line and electric capacity has risen. However, in the event of fault, problems occur in extending the range of fault coverage and increasing fault current. In these reasons, protection devise is recognized as the prevention of an accident and fault current. This paper dealt with minimizing fault propagation and limiting fault current by adjusting fault current limiter (FCL) with fast interrupter. At this point, we compared and analyzed characteristics between non-inductive resistance and fault current which is limited by superconducting units. In normal state of the power system, power was supplied to the load, but when fault occurred, the interrupter was operated as CT which detected the over-current. Its operation made the limitation of fault current through a FCL. We concluded that the limiter using superconducting units was more efficient with the increase of power voltage. Superconducting fault current limiter with the fast interrupter prevented the spread of a fault, and improved reliability of power system.

Analysis of Transient Characteristics of SFCL using the Three-Phase Transformer and Power Switch (삼상 변압기와 전력용 스위치를 이용한 초전도 한류기의 과도특성 해석)

  • Jung, Byung-Ik;Choi, Hyo-Sang;Park, Jung-Il;Cho, Geum-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1743-1747
    • /
    • 2012
  • The research of superconducting fault current limiter (SFCL) for reduction of the fault current is actively underway in the worldwide. In this paper, we analyzed the characteristics of a SFCL using the transformer and superconducting elements combined mutually in accordance with the fault types. The structure of this SFCL was composed of the secondary and third windings of a transformer connected to the load and the superconducting element, respectively. The provided electric power flew into the load connected to the secondary winding of the transformer in normal state. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the effect of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the current transformer(CT) and then turn-on and turn-off switching behavior of the secondary line in the transformer was performed by the silicon-controlled rectifier(SCR). As a result, the proposed SFCL limited the fault current within one-cycle efficiently. Also, the degradation of the superconducting element in the normal state was avoided.

Magnetic Field Analysis of the Field Coil for 10 MW Class Superconducting Wind Turbines (10 MW급 초전도 풍력발전기 계자코일 전자장 해석)

  • Kim, Ji-Hyung;Park, Sa-Il;Kim, Ho-Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.18-22
    • /
    • 2012
  • This paper presents the magnetic field analysis of the racetrack double pancake field coil for the 10 MW class superconducting wind turbine which is considered to be the next generation of wind turbines using the 3 Dimensional FEM(Finite Elements Method). Generally, the racetrack-shaped field coil which is wound by the second generation(2G) superconducting wire in the longer axial direction is used, because the racetrack-shaped field coil generates the higher magnetic field density at the minimum size and reduces the synchronous reactance. To analysis the performance of the wind turbines, It is important to calculate the distribution of magnetic flux density at the straight parts and both end sections of the racetrack-shaped high temperature superconductivity(HTS) field coil. In addition, Lorentz force acting on the superconducting wire is calculated by the analysis of the magnetic field and it is important that through this way Lorentz force can be used as a parameter in the mechanical analysis which analyzes the mechanical stress on the racetrack-shaped field coil.