• Title/Summary/Keyword: super austenitic stainless steel

Search Result 21, Processing Time 0.024 seconds

The Effect of Shielding N2 gas on The Pitting Corrosion of Seal-welded Super Austenitic Stainless Steel by Autogenous Welding

  • Kim, Ki Tae;Chang, Hyun Young;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.49-58
    • /
    • 2017
  • Many research efforts on the effect of nitrogen on the corrosion resistance of stainless steels have been reported, but little research has been conducted on the effect of nitrogen for the weldment of stainless steels by the seal-weld method. Therefore, this work focused on the determining the corrosion resistance of tube/tube sheet mock-up specimen for sea water condensers, and elucidating the effect of shielding nitrogen gas on its resistance. The pitting corrosion of autogenously welded specimen propagated preferentially along the dendritic structure. Regardless of the percent of shielding nitrogen gas, the analyzed nitrogen contents were very much lower than that of the bulk specimen. This can be arisen because the nitrogen in shielding gas may partly dissolve into the weldment, but simultaneously during the welding process, nitrogen in the alloy may escape into the atmosphere. However, the pitting resistance equivalent number (PREN) of the interdendrite area was higher than that of the dendrite arm, regardless of the shielding gas percent; and the PREN of the interdendrite area was higher than that of the base metal; the PREN of the dendrite arm was lower than that of the base metal because of the formation of (Cr, Mo) rich phases by welding.

A Study on the Welding Technology for the Fabrication of Korean Fusion Reactor(KSTAR)

  • Kim, Dae-Soon;Park, Chang-Ho
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.418-424
    • /
    • 2002
  • Korean Fusion Reactor(KSTAR) system consists of a vacuum vessel, in-vessel components, cryostat, thermal shield, super-conducting magnets and magnet supporting structures. These systems are in the final stage of engineering design with the involvement of industrial manufacturers. The overall configuration and the detailed dimensions of the KSTAR structure have been determined and the first stage of manufacturing is progressing now. In this study, the fabrication and assembly sequence were evaluated in viewpoint of high strengthening joints and very high accuracy. Especially for this purpose, the special cleaning process and welding process were proposed for high strengthening austenitic stainless steel which shall be used at cryogenic temperature. The draft procedure qualification data for welding process are presented with precise welding data including special narrow groove design. For the cooling line attachment on the surface of inside wall of magnet structure case, Induction brazing technology is introduced with some special jigging system and some consumables.

  • PDF

A Study on Plasma Sprayed Porous Super Austenitic Stainless Steel Coating for Improvement of Bone Ingrowth (Bone ingrowth 향상을 위해 플라즈마 용사된 초내식성 오스테나이트 스테인리스강의 다공성 코팅층에 대한 연구)

  • 오근택;박용수
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 1996
  • The cementless fixation of bone ingrowth by porous coatings on artificial hip joint prostheses are replacing polymethylmethacrylate(PMMA) bone cement fixations. However, the major interests in the field of porous metal coating are environmental corrosivity accelerated by metal ion release, deterioration in the mechanical property of the coating, and the mechanical failure of the coatings as well as the substrate. Therefore, the selection of right materials for coatings and the development of porous coating techniques must be accomplished. Because of the existing problems in Ti and Ti alloys which are used extensively, this study is focused on the plasma spraying technique for coating on super stainless steel substrate. In order to determine the optimum conditions which satisfy the requirement for the porous coatings, under the plasma spraying, we selected the experimental parameters which extensively influenced on the characteristics of the coating through the pre-examination. Spray distance has been selected among 120, 160, and 200mm and primary gas flow rate among 70, 100, and 130 SCFH. Current and secondary gas($H_2$) flow rate was fixed at 400A, and 15 SCFH respectively. To understand the characteristics of the coatings, surface morphology, cross-sectional micro-structure, surface roughness, residual stress, and corrosion resistance were elucidated and the best conditions for the bone ingrowth improvement on artificial hip joint prostheses were found.

  • PDF

Investigation of the Electrochemical Characteristics of Electropolished Super Austenite Stainless Steel with Seawater Temperature (전해연마한 슈퍼오스테나이트 스테인리스강의 해수온도에 따른 전기화학적 특성 연구)

  • Hyun-Kyu Hwang;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.164-174
    • /
    • 2023
  • Electropolishing technology uses an electrochemical reaction and improves surface roughness, glossiness, and corrosion resistance. In this investigation, electropolishing was performed to improve the corrosion resistance of super austenitic stainless steel. As a result of electropolishing, surface roughness (0.16 ㎛) was improved by about 76.5% compared to mechanical polishing (0.68 ㎛). In addition, the electropolished surface was smooth because the average and variance values of the depth histogram were small. Tafel analysis was performed after a potentiodynamic polarization experiment with seawater temperature, and the microstructure was compared and analyzed. The corrosion current density at 30 ℃, 60 ℃, and 90 ℃ was reduced by 0.083 ㎂/cm2, 0.296 ㎂/cm2, and 0.341 ㎂/cm2, respectively. Pitting occurred in the mechanical polished specimen at 30 ℃, but partial intergranular corrosion was observed in the electropolished specimen, and pitting occurred predominantly at both 60 ℃ and 90 ℃. In addition, the damage depths of the electropolished specimen were shallower than those of mechanical polishing at 30 ℃ and 60 ℃, but the opposite result was seen at 90 ℃.

Materials Integrity Analysis for Application of Hyper Duplex Stainless Steels to Korean Nuclear Power Plants

  • Chang, Hyun-Young;Park, Heung-Bae;Park, Yong-Soo;Kim, Soon-Tae;Kim, Young-Sik;Kim, Kwang-Tae;Jhang, Yoon-Young
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.187-195
    • /
    • 2010
  • Hyper duplex stainless steels have been developed in Korea for the purpose of application to the seawater system of Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulating water pump headers, and the heat exchanged sea water is extracted to the discharge pipes in circulating water system connected to the circulating water discharge lines. The high flow velocity of some part of seawater system in nuclear power plants accelerates damages of components. Therefore, high strength and high corrosion resistant steels need to be applied for this environment. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical & mechanical properties and corrosion resistance of newly developed materials are quantitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld & HAZ (heat affected zone) are analyzed and the best compositions are suggested. The optimum conditions in welding process are derived for ensuring the volume fraction of ferrite(${\alpha}$) and austenite(${\gamma}$) in HAZ and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured. As a result of all experiments, it was found that the newly developed hyper duplex stainless steel WREMBA has higher corrosion resistance and mechanical properties than those of super austenitic stainless steels including welded area. It is expected to be a promising material for seawater systems of Korean nuclear power plants.

Wear Resistance of c-BN Surface Modified 316L Austenitic Stainless Steel by R.F. Sputtering (R.F. sputtering 방법에 의해 c-BN 표면처리된 316L 오스테나이트계 스테인리스 강의 내마모특성 향상)

  • Lee, Kwang-Min;Jeong, Se-Hoon;Park, Sung-Tae
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.194-198
    • /
    • 2010
  • Cubic boron nitride (c-BN) is a promising material for use in many potential applications because of its outstanding physical properties such as high thermal stability, high abrasive wear resistance, and super hardness. Even though 316L austenitic stainless steel (STS) has poor wear resistance causing it to be toxic in the body due to wear and material chips, 316L STS has been used for implant biomaterials in orthopedics due to its good corrosion resistance and mechanical properties. Therefore, in the present study, c-BN films with a $B_4C$ layer were applied to a 316L STS specimen in order to improve its wear resistance. The deposition of the c-BN films was performed using an r.f. (13.56 MHz) magnetron sputtering system with a $B_4C$ target. The coating layers were characterized using XPS and SEM, and the mechanical properties were investigated using a nanoindenter. The friction coefficient of the c-BN coated 316L STS steel was obtained using a pin-on-disk according to the ASTM G163-99. The thickness of the obtained c-BN and $B_4C$ were about 220 nm and 630 nm, respectively. The high resolution XPS spectra analysis of B1s and N1s revealed that the c-BN film was mainly composed of $sp^3$ BN bonds. The hardness and elastic modulus of the c-BN measured by the nanoindenter were 46.8 GPa and 345.7 GPa, respectively. The friction coefficient of the c-BN coated 316L STS was decreased from 3.5 to 1.6. The wear property of the c-BN coated 316L STS was enhanced by a factor of two.

Effect of Cobalt Contents on the Biocompatibility and Corrosion Properties of Fe-31Cr-27Ni-1.6Mo-1.5W-0.26N Alloy (Fe-31Cr-27Ni-1.6Mo-1.5W-0.26N계 초내식성 스테인리스강의 생체적합성 및 부식특성에 미치는 Co함량의 영향)

  • Jang, Soon Geun;Yoo, Young Ran;Nam, Hee Soo;Shim, Gyu Tae;Kim, Jung Gu;Kim, Young Sik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.209-216
    • /
    • 2008
  • Super austenitic stainless steels shows the high PRE (Pitting Resistance Equivalent) number and the good corrosion resistance. This work controlled the Co contents in Fe-31Cr-1.7Mo-27Ni-0.25N alloys to elucidate the effect of cobalt contents on the biocompatibility and corrosion resistance. Increasing Co contents, the hardness of the annealed alloys tends to be reduced. In aged alloys, cobalt decreased the increments of hardness by aging treatment. Cobalt decreased the critical pitting temperature (CPT) in 6% $FeCl_3$ + 1% HCl solution, but improved the anodic polarization behavior in Hanks' balanced salt solution and artificial saliva solution. Repassivation rate in artificial body solutions was improved by increasing cobalt contents, but didn't show the linear relationship to PRE number of the alloys. The experimental alloys showed the non-cytotoxicity because of its high corrosion resistance.

The Latest Technology Development Trends of Flux Cored Wire (Flux Cored Wire의 최신 기술 개발 동향)

  • Im, Hee-Dae;Choi, Chang-Hyun;Jung, Jae-Heon;Kil, Woong
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.1-10
    • /
    • 2016
  • Flux Cored Wire is the most widely used welding material for Flux Cored Arc Welding these days. This paper introduces the technical aspects of manufacturing FCW and the development trend of FCW for each type of steel and metal. The studies are ongoing to lower the production cost of seamless-type FCW since it has not been generally used in welding shops so far because of it high cost even though the seamless-type FCW has various advantages than folded-type FCW in terms of manufacturing technology. Meanwhile, a technical research has been carried out to develop a rutile type of FCW products which satisfies high toughness after post heat treatment. In addition, for high-speed fillet welding, there has been a development of welding materials which can be welded in Single Auto-Carriage 100 cpm or more and up to Twin Tandem 200 cpm without occurring any welding defect in order to improve the welding productivity. As Zn coated steel is being used recently to improve the corrosion resistance of the automotive parts, a research and development for Metal Cored Wire has been conducted to reduce the Si island produced in welding operation than those produced when using the former solid wires. A development of welding material that guarantees CTOD performance beyond $-40^{\circ}C$ CTOD to $-60^{\circ}C$ is underway by different steel grades, and FCW for super austenitic stainless steel is being developed as the corrosion resistant steel has been upgraded.

Corrosion Behaviors of Structural Materialsin High Temperature S-CO2 Environments

  • Lee, Ho Jung;Kim, Hyunmyung;Jang, Changheui
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and $650^{\circ}C$ in SFR S-$CO_2$ environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and $650^{\circ}C$. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at $650^{\circ}C$, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at $550^{\circ}C$, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-$CO_2$ environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

Development of Assessment Methodology on Creep-Fatigue Crack Behavior for a Grade 91 Steel Structure (Mod.9Cr-1Mo 강 구조의 크리프-피로 균열 거동 평가법 개발)

  • Lee, Hyeong-Yeon;Lee, Jae-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • In this study, an assessment method on creep-fatigue crack initiation and crack growth for a Mod.9Cr-1Mo steel (ASME Grade 91) structure has been developed with an extension of the French RCC-MR A16 procedure. The current A16 guide provides defect assessment procedure for a creep-fatigue crack initiation and crack growth for an austenitic stainless steel, but no guideline is available yet for a Mod.9Cr-1Mo steel which is now widely being adopted for structural materials of future nuclear reactor system as well as ultra super critical (USC) thermal plant. In the present study an assessment method on creep-fatigue crack initiation and crack growth is provided for the FMS (Ferritic-Martensitic Steel) and assessment on the creep-fatigue crack behavior for a structure has been carried out. The assessment results were compared with the observed images from a structural test.