• Title/Summary/Keyword: sup property

Search Result 513, Processing Time 0.026 seconds

A study on breakthrough characteristics of ion exchange bed with H- and ETAH-form resins for cation exchange in NH3 and ETA solution including trace NaCl (미량의 NaCl을 포함하는 NH3 및 ETA 용액에서 H 및 ETAH 형 수지에 대한 이온교환 파과 특성 연구)

  • Ahn, Hyun-Kyoung;Kim, Youn-Su;Park, Byung-Gi;Rhee, In-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.533-544
    • /
    • 2021
  • Ion exchange (IX) performance on the exchanger bed is essentially evaluated for the generation of ultrapure water in electronics and chemical industries and for the corrosion control in nuclear power plants. The breakthrough characteristics of IX bed with multi-component were investigated with both cation- and mixed-IX beds of H- and ETAH-form for four kinds of cation exchange resins by using the combined solution of ethanolamine (ETA) and ammonia (NH3) at trace NaCl. Unlike major components (ETAH+ and NH4+ ), the phenomena of breakthrough and overshooting at bed outlet were not observed by Na+ over the test period (> 3 times theoretical exchange capacity of IX bed). The breakthrough from H-form resin bed was sequentially reached by ETAH+ and NH4+, while the overshooting was observed for ETAH+ at the breakthrough of NH4+. NH4+ was 51.5% higher than ETAH+ in terms of the relative selectivity determined with the width of breakthrough zone. At the increased concentration of Na+ at bed inlet, the selectivity and the overshooting were decreased and increased, respectively. Na+ leakage was higher from ETAH-form resin bed and was not identical for four kinds of cation-exchange resins, which may be reduced by improving the intrinsic property of IX resin.

Investigation of acrylic/boric acid composite gel for neutron attenuation

  • Ramadan, Wageeh;Sakr, Khaled;Sayed, Magda;Maziad, Nabila;El-Faramawy, Nabil
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2607-2612
    • /
    • 2020
  • The present work was aimed to show the possibility of using hydrogel (acrylic/boric acid) for evaluation of the neutron radiation shielding. The influence of acrylic acid concentration, different gamma doses and relative contents of boric acid were studied. The physical properties and the thermomechanical stability of the studied samples were investigated. The shielding property of the composite for neutron was tested by Pu-Be neutron source (5 Ci) under room temperature. The neutron fluence rates and gamma fluxes were measured using a stilbene organic scintillator. The macroscopic effective removal cross-section ΣR (cm-1) of fast neutrons and total attenuation coefficient μ (cm-1) of gamma rays has been studied experimentally. The transmission parameters, the relaxation length (??) and the half-value layer (HVL) were obtained. The obtained results indicated that the addition of boric acid to acrylic acid tends to increase the macroscopic effective removal cross-section ΣR (cm-1) to 0.141 compared to 0.094 of ordinary concrete.

A New-Generation Fluorescent-Based Metal Sensor - iLOV Protein

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Rhee, Jin-Kyu;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.503-510
    • /
    • 2015
  • The iLOV protein belongs to a family of blue-light photoreceptor proteins containing a light-oxygen-voltage sensing domain with a noncovalently bound flavin mononucleotide (FMN) as its chromophore. Owing to advantages such as its small size, oxygen-independent nature, and pH stability, iLOV is an ideal candidate over other reporter fluorescent proteins such as GFP and DsRed. Here, for the first time, we describe the feasibility of applying LOV domain-based fluorescent iLOV as a metal sensor by measuring the fluorescence quenching of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the inherent copper sensing property of the iLOV protein and identified the possible amino acids responsible for metal binding. The fluorescence quenching upon exposure to Cu2+ was highly sensitive and exhibited reversibility upon the addition of the metal chelator EDTA. The copper binding constant was found to be 4.72 ± 0.84 µM. In addition, Cu2+-bound iLOV showed high fluorescence quenching at near physiological pH. Further computational analysis yielded a better insight into understanding the possible amino acids responsible for Cu2+ binding with the iLOV protein.

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

Eupafolin Suppresses P/Q-Type Ca2+ Channels to Inhibit Ca2+/Calmodulin-Dependent Protein Kinase II and Glutamate Release at Rat Cerebrocortical Nerve Terminals

  • Chang, Anna;Hung, Chi-Feng;Hsieh, Pei-Wen;Ko, Horng-Huey;Wang, Su-Jane
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.630-636
    • /
    • 2021
  • Eupafolin, a constituent of the aerial parts of Phyla nodiflora, has neuroprotective property. Because reducing the synaptic release of glutamate is crucial to achieving pharmacotherapeutic effects of neuroprotectants, we investigated the effect of eupafolin on glutamate release in rat cerebrocortical synaptosomes and explored the possible mechanism. We discovered that eupafolin depressed 4-aminopyridine (4-AP)-induced glutamate release, and this phenomenon was prevented in the absence of extracellular calcium. Eupafolin inhibition of glutamate release from synaptic vesicles was confirmed through measurement of the release of the fluorescent dye FM 1-43. Eupafolin decreased 4-AP-induced [Ca2+]i elevation and had no effect on synaptosomal membrane potential. The inhibition of P/Q-type Ca2+ channels reduced the decrease in glutamate release that was caused by eupafolin, and docking data revealed that eupafolin interacted with P/Q-type Ca2+ channels. Additionally, the inhibition of calcium/calmodulin-dependent protein kinase II (CaMKII) prevented the effect of eupafolin on evoked glutamate release. Eupafolin also reduced the 4-AP-induced activation of CaMK II and the subsequent phosphorylation of synapsin I, which is the main presynaptic target of CaMKII. Therefore, eupafolin suppresses P/Q-type Ca2+ channels and thereby inhibits CaMKII/synapsin I pathways and the release of glutamate from rat cerebrocortical synaptosomes.

An Optimality-Based Analysis of Relative Positioning of Wh-related Prepositions in English

  • Han-gyoo, Khym
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.576-582
    • /
    • 2022
  • In this paper, we discuss the relative positioning of Wh-related English prepositions in a Wh-interrogative construction within the Optimality Theory [1-2]. By employing the two key constraints such as *Prep-Str and Align which are developed for the positioning of Wh-related prepositions from Romance languages such as French and Italian [3] and for the positioning of Wh-related prepositions from the middle English prose from 1500 to 1900 [4-6], and by slightly modifying the constraint hierarchy of *Prep-STR >>Align into **PrepSTR <<>>Align, Choi argues that his new theory can properly explain the unique behaviors of English Whrelated prepositions being able to take two 'optional' operations such as pied-piping and stranding to find legitimate landing sites in a Wh-interrogative construction [7]. However, this new analysis again reveals the following critical problems: (1) Unlike the 'light' English Wh-related prepositions which can two optional operations for legitimate landing sites in a Wh-interrogative construction, 'heavy' Wh-related English prepositions are not allowed to have such two options: they take just one option of pied-piping only. Thus, (2) his argumentation based on the existing constraints and the modified constraint hierarchy is neither general enough nor proper to explain the issue of the relative positioning for all English Wh-related preposition cases. To include such exceptional syntactic property of the 'heavy' preposition cases within the Optimality Theory, we suggest a new constraint of *HPrep-STR ranked at the highest position of the constraint hierarchy to disallow a 'heavy' or multi-syllabic Wh-related English preposition to stay alone at the end of a sentence. The new final hierarchy of constraints we suggest to explain the exceptional positioning of 'heavy' Wh-related prepositions together with the other 'light' Wh-related prepositions in English Wh-interrogative construction will be as follows: *HPrep-STR>>Align<<>>*Prep-STR.

Sintering Behavior and Mechanical Property of Transition Metal Carbide-Based Cermets by Spark Plasma Sintering (방전플라즈마 소결 공정 적용 전이금속 카바이드 서멧의 소결 및 기계적 특성)

  • Lee, Jeong-Han;Park, Hyun-Kuk;Hong, Sung-Kil
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.44-50
    • /
    • 2022
  • Transition metal carbides (TMCs) are used to process difficult-to-cut materials due to the trend of requiring superior wear and corrosion properties compared to those of cemented carbides used in the cutting industry. In this study, TMC (TiC, TaC, Mo2C, and NbC)-based cermets were consolidated by spark plasma sintering at 1,300 ℃ (60 ℃min) with a pressure of 60 MPa with Co addition. The sintering behavior of TMCs depended exponentially on the function of the sintering exponent. The Mo2C-6Co cermet was fully densified, with a relative density of 100.0 %. The Co-binder penetrated the hard phase (carbides) by dissolving and re-precipitating, which completely densified the material. The mechanical properties of the TMCs were determined according to their grain size and elastic modulus: TiC-6Co showed the highest hardness of 1,872.9 MPa, while NbC-6Co showed the highest fracture toughness of 10.6 MPa*m1/2. The strengthened grain boundaries due to high interfacial energy could cause a high elastic modules; therefore, TiC-6Co showed a value of 452 ± 12 GPa.

Effect of CaO on the antibacterial property of zinc borosilicate glasses (Zinc borosilicate 유리의 CaO 첨가에 따른 항균력 개선 효과 검증)

  • Minsung Hwang;Jaeyeop Chung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.187-190
    • /
    • 2023
  • In this study, antibacterial glasses were developed by the addition of CaO in ZnO-Na2O-B2O3-SiO2 glass system. The effect of the addition of CaO on the thermal properties, dissolution properties, surface zeta potential and antibacterial activity were analyzed. Differential thermal analysis (DTA) analysis was performed to analyze the thermophysical properties of 30ZnO-xCaO-20Na2O-30B2O3-(20-x)SiO2 (x = 0, 2, 4, 6, 8, 10 mol%). It was confirmed that the glass transition temperature decreased as the CaO content increased. The amount of released Zn2+ ions and surface zeta potential of glass samples increased with increasing CaO concentration. For these reasons, the antibacterial activity was dramatically improved. By the addition of CaO, we could successfully develop an antibacterial glass with 99.9 % antibacterial activity against both Escherichia coli and Staphylococcus aureus.

Predicting Site Quality by Partial Least Squares Regression Using Site and Soil Attributes in Quercus mongolica Stands (신갈나무 임분의 입지 및 토양 속성을 이용한 부분최소제곱 회귀의 지위추정 모형)

  • Choonsig Kim;Gyeongwon Baek;Sang Hoon Chung;Jaehong Hwang;Sang Tae Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.23-31
    • /
    • 2023
  • Predicting forest productivity is essential to evaluate sustainable forest management or to enhance forest ecosystem services. Ordinary least squares (OLS) and partial least squares (PLS) regression models were used to develop predictive models for forest productivity (site index) from the site characteristics and soil profile, along with soil physical and chemical properties, of 112 Quercus mongolica stands. The adjusted coefficients of determination (adjusted R2) in the regression models were higher for the site characteristics and soil profile of B horizon (R2=0.32) and of A horizon (R2=0.29) than for the soil physical and chemical properties of B horizon (R2=0.21) and A horizon (R2=0.09). The PLS models (R2=0.20-0.32) were better predictors of site index than the OLS models (R2=0.09-0.31). These results suggest that the regression models for Q. mongolica can be applied to predict the forest productivity, but new variables may need to be developed to enhance the explanatory power of regression models.

Thermophysical Properties of Copper/graphite Flake Composites by Electroless Plating and Spark Plasma Sintering (무전해도금 및 방전 플라즈마 소결을 이용한 구리/흑연 복합재료 제조 및 열물성 특성 평가)

  • Lee, Jaesung;Kang, Ji Yeon;Kim, Seulgi;Jung, Chanhoe;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m-1K-1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10-6 to 3.06 × 10-6K-1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.