DOI QR코드

DOI QR Code

Sintering Behavior and Mechanical Property of Transition Metal Carbide-Based Cermets by Spark Plasma Sintering

방전플라즈마 소결 공정 적용 전이금속 카바이드 서멧의 소결 및 기계적 특성

  • Lee, Jeong-Han (Korea Institute of Industrial Technology (KITECH), Automobile Materials and Components R&D Group) ;
  • Park, Hyun-Kuk (Korea Institute of Industrial Technology (KITECH), Automobile Materials and Components R&D Group) ;
  • Hong, Sung-Kil (Chonnam National University, Materials Science & Engineering)
  • 이정한 (한국생산기술연구원 동력소재부품연구그룹) ;
  • 박현국 (한국생산기술연구원 동력소재부품연구그룹) ;
  • 홍성길 (전남대학교 신소재공학부)
  • Received : 2021.11.01
  • Accepted : 2022.01.03
  • Published : 2022.01.27

Abstract

Transition metal carbides (TMCs) are used to process difficult-to-cut materials due to the trend of requiring superior wear and corrosion properties compared to those of cemented carbides used in the cutting industry. In this study, TMC (TiC, TaC, Mo2C, and NbC)-based cermets were consolidated by spark plasma sintering at 1,300 ℃ (60 ℃min) with a pressure of 60 MPa with Co addition. The sintering behavior of TMCs depended exponentially on the function of the sintering exponent. The Mo2C-6Co cermet was fully densified, with a relative density of 100.0 %. The Co-binder penetrated the hard phase (carbides) by dissolving and re-precipitating, which completely densified the material. The mechanical properties of the TMCs were determined according to their grain size and elastic modulus: TiC-6Co showed the highest hardness of 1,872.9 MPa, while NbC-6Co showed the highest fracture toughness of 10.6 MPa*m1/2. The strengthened grain boundaries due to high interfacial energy could cause a high elastic modules; therefore, TiC-6Co showed a value of 452 ± 12 GPa.

Keywords

Acknowledgement

This study has been conducted with the support of the Korea Institute of Industrial Technology (KITECH), Production Industry Leading Core Technology Developement Project as the "Development of an on-site facility attached cryogenic machining integrated system (KITECH EH-21-0014)".

References

  1. E. O. Ezugwu and S. K. Lim, Lubric. Eng., 51, 139 (1995).
  2. M. Jabor, N . S. Radh, M. A. Al-Kinani and Z. S. AlKhafaji, J. Mech. Eng. Res., 44, 30 (2021).
  3. J.-H. Lee, I.-H. Oh, J.-H. Jang, J.-H. Kim, S.-K. Hong and H.-K. Park, Met. Mater. Int., 27, 456 (2021). https://doi.org/10.1007/s12540-020-00795-6
  4. J.-H. Lee and H.-K. Park, Korean J. Mater. Res., 31, 397 (2021). https://doi.org/10.3740/MRSK.2021.31.7.397
  5. M. Chen, X. Zhang, X. Xiao and H. Zhao, Mater. Res. Express, 8, 076501 (2021). https://doi.org/10.1088/2053-1591/ac0d92
  6. Z. Cao, N. Jin, J. Ye, D. Zhuang and Y. Liu, Int. J. Refract. Met. Hard Mater., 99, 105605 (2021). https://doi.org/10.1016/j.ijrmhm.2021.105605
  7. J.-H. Lee, H.-K. Park, J.-H. Jang, S.-K. Hong and I.-H. Oh, Korean J. Met. Mater., 55, 783 (2017). https://doi.org/10.3365/KJMM.2017.55.11.783
  8. S.-G. Shin, Korean J. Mater. Res., 24, 526 (2014). https://doi.org/10.3740/MRSK.2014.24.10.526
  9. D.-G. Ahn, Korean J. Mater. Res., 10, 838 (2000).
  10. H.-K. Park, I.-H. Oh, J.-H. Kim, S.-K. Hong and J.-H. Lee, Arch. Metall. Mater., 66, 997 (2021).
  11. E. S. Lee, J. M. Byun, Y. K. Jeong and S. T. Oh, Korean J. Mater. Res., 30, 321 (2020). https://doi.org/10.3740/MRSK.2020.30.6.321
  12. H. J. Kang, H. J. Kim, J. Y. Ham, Y. J. Lee, Y. K. Jeong and S. T. Oh, Korean J. Mater. Res., 28, 511 (2018). https://doi.org/10.3740/MRSK.2018.28.9.511
  13. C.-J. Yang, Mater. Res. Express, 7, 016508 (2020). https://doi.org/10.1088/2053-1591/ab5a2c
  14. M. F. Ashby, Acta Metall., 22, 275 (1974). https://doi.org/10.1016/0001-6160(74)90167-9
  15. F. L. Zhang, C. Y. Wang and M. Zhu, Scr. Mater., 49, 1123 (2003). https://doi.org/10.1016/j.scriptamat.2003.08.009
  16. B. Flipon, V. Grand, B. Murgas, A. Gaillac, A. Nicolay, N. Bozzolo and M. Bernacki, Mater. Charact., 174, 110977 (2021). https://doi.org/10.1016/j.matchar.2021.110977
  17. G. M. Pharr, Mater. Sci. Eng., A, 253, 153 (1998). https://doi.org/10.1016/S0921-5093(98)00724-2
  18. S. D. Oguntuyi, O. T. Johnson and M. B. Shongwe, Int. J. Adv. Manufact. Technol., 116, 69 (2021). https://doi.org/10.1007/s00170-021-07471-y
  19. J.-H. Lee, I.-H. Oh and H.-K. Park, Arch. Metall. Mater., 66, 1029 (2021).
  20. W. D. Schubert, A. Bock and B. Lux, Int. Refract. Met. Hard Mater., 13, 281 (1995). https://doi.org/10.1016/0263-4368(95)92674-9
  21. R. L. Coble, J. Am. Ceram. Soc., 41, 55 (1958). https://doi.org/10.1111/j.1151-2916.1958.tb13519.x
  22. S. I. Cha and S. H. Hong, Mater. Sci. Eng., A, 356, 381 (2003). https://doi.org/10.1016/S0921-5093(03)00151-5
  23. S. Kim, J.-M. Chae, S. Kang, S.-S. Ryu and H.-T. Kim, J. Korean Powder Metall. Inst., 15, 503 (2008). https://doi.org/10.4150/KPMI.2008.15.6.503
  24. P. Park, H. J. Lee, Y. Jo, B. Gu, W. J. Choi and J. Byun, J. Korean Powder Metall. Inst., 26, 515 (2019). https://doi.org/10.4150/KPMI.2019.26.6.515
  25. C.-H. Lee, H.-H. Lu, C.-A. Wang, P. K. Nayak and J.-L. Huang, J. Am. Ceram. Soc., 94, 1182 (2011). https://doi.org/10.1111/j.1551-2916.2010.04196.x
  26. W. Wan, J. Xiong and M. Liang, Ceram. Int., 43, 944 (2017). https://doi.org/10.1016/j.ceramint.2016.10.024
  27. A. B. Moreira, L. M. M. Ribeiro and M. F. Vieira, Materials, 14, 5072 (2021). https://doi.org/10.3390/ma14175072
  28. H. Yang, X. Yue, Z. Wang, Y. Shao and S. Shu, J. Mater. Res. Technol., 9, 6475 (2020). https://doi.org/10.1016/j.jmrt.2020.04.033
  29. R. F. Snowball and D. R. Milner, Powder Metall., 11, 23 (1968). https://doi.org/10.1179/pom.1968.11.21.002