• Title/Summary/Keyword: sunlight

Search Result 1,030, Processing Time 0.022 seconds

Edge Enhancement for Vessel Bottom Image Considering the Color Characteristics of Underwater Images (수중영상의 색상특성을 고려한 선박하부 영상의 윤곽선 강조 기법)

  • Choi, Hyun-Jun;Yang, Won-Jae;Kim, Bu-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.926-932
    • /
    • 2017
  • Image distortion can occur when photographing deep sea targets with an optical camera. This problem arises because sunlight is not sufficiently transmitted due to seawater and various floating particles of dust. Particularly, color distortion takes place, causing green and blue color channels to be over emphasized due to water depth, while distortion of boundaries also occurs due to light refraction by seawater and floating particles of dust. These distortions degrade the overall quality of underwater images. In this paper, we analyze underwater images of the bottom of vessels. Based on the results, we propose a technique for color correction and edge enhancement. Experimental results show that the proposed method increases edge clarity by 3.39 % compared to the effective edges of the original underwater image. In addition, a quantitative evaluation and subjective image quality evaluation were concurrently performed. As a result, it was confirmed that object boundaries became clear with color correction. The color correction and contour enhancement method proposed in this paper can be applied in various fields requiring underwater imaging in the future.

Development of Korean SPAR(Soil-Plant-Atmosphere-Research) System for Impact Assessment of Climate Changes and Environmental Stress (기후변화 및 환경스트레스 영향평가를 위한 한국형 SPAR(Soil-Plant-Atmosphere-Research) 시스템의 개발)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.187-195
    • /
    • 2019
  • The needs for precise diagnostics and farm management-decision aids have increased to reduce the risk of climate change and environmental stress. Crop simulation models have been widely used to search optimal solutions for effective cultural practices. However, limited knowledge on physiological responses to environmental variation would make it challenging to apply crop simulation models to a wide range of studies. Advanced research facilities would help investigation of plant response to the environment. In the present study, the sunlit controlled environment chambers, known as Korean SPAR (Soil-Plant-Atmosphere-Research) system, was developed by renovating existing SPAR system. The Korean SPAR system controls and monitors major environmental variables including atmospheric carbon dioxide concentration, temperature and soil moisture. Furthermore, plants are allowed to grow under natural sunlight. Key physiological and physical data such as canopy photosynthesis and respiration, canopy water and nutrient use over the whole growth period are also collected automatically. As a case study, it was shown that the Korean SPAR system would be useful for collection of data needed for understanding the growth and developmental processes of a crop, e.g., soybean. In addition, we have demonstrated that the canopy photosynthetic data of the Korean SPAR indicate the precise representation of physiological responses to environment variation. As a result, physical and physiological data obtained from the Korean SPAR are expected to be useful for development of an advanced crop simulation model minimizing errors and confounding factors that usually occur in field experiments.

A Study on Safe Separation Distance between Tunnel and Interchange (터널과 입체 교차로간의 안전한 이격거리 연구)

  • Lee, In-Bae;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.273-279
    • /
    • 2019
  • Development of mountain area is increasing due to the demand for improvement of traffic convenience and development of underdeveloped area. Therefore, there frequently are sections where tunnels and interchanges are located close to each other. These sections do not only affect tunnel planning, types and length of interchanges, but also affect more on route selection. In Korea, several design criteria present each reference value but these values are very similar. In the situation, the minimum value among them is usually applied when planning roads and it could cause traffic safety problems in different site conditions. In this study, the problems of design speed, illuminance adaptation distance, and lane change intervals are analyzed by simulating the cases that the problem could occur when calculating the separation distance between tunnel and interchange. The results obtained from this study can be summarized as following: the driving speed should be applied in case that the site has a big gap between design speed and driving speed because the uniform application of the design speed is not safe; the illuminance adaptation distance should include the influence distance in the section affected by the direct light; in addition, the lane change distance should include the time to perceive the situation of the next lane after the lane change in the section required for successive lane change.

Characteristics of Natural Habitats of Rare Species, Tofieldia nuda (희귀식물 꽃장포의 생육환경 특성)

  • Kwon, Soonsik;Hwang, In-Soo;Park, Wan-Gun;Cheong, Eun Ju
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.1
    • /
    • pp.86-106
    • /
    • 2019
  • We investigated the environmental conditions of natural habitats of T. nuda. The species was found on rocky northern hills ($60{\sim}90^{\circ}$) near the stream where the sea level ranges 95~145m. The average annual temperature of the habitats was lower than other places of South Korea. The differences of the lowest and the highest of the year was significantly huge than any other places. Plants were growing at the edge of stream that water reached but not submerged. Most of plants were found in North, Northeast or Northwest. It is suggested that these species require moist and low sunlight for growth. The common vegetation along with the T. nuda includes Mukdenia rossii, Selaginella rossii, Calamagrostis epigeios, and Rhododendron yedoense f. poukhanense. The dominance values and sociability of T. nuda were below 3 in all studied habitats and the variance of the number of individuals among the habitats was very high. As the optimum habitats for the T. nuda are decreasing due to the extreme precipitation patterns. It is also expected that the number of T. nuda will be decreased in the future. Therefore restoration activity in situ or ex situ must be conducted to conserve this valuable plant species.

Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection (터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과)

  • Lee, Kyu Beom;Shin, Hyu Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.419-432
    • /
    • 2019
  • Most of deep learning model training was proceeded by supervised learning, which is to train labeling data composed by inputs and corresponding outputs. Labeling data was directly generated manually, so labeling accuracy of data is relatively high. However, it requires heavy efforts in securing data because of cost and time. Additionally, the main goal of supervised learning is to improve detection performance for 'True Positive' data but not to reduce occurrence of 'False Positive' data. In this paper, the occurrence of unpredictable 'False Positive' appears by trained modes with labeling data and 'True Positive' data in monitoring of deep learning-based CCTV accident detection system, which is under operation at a tunnel monitoring center. Those types of 'False Positive' to 'fire' or 'person' objects were frequently taking place for lights of working vehicle, reflecting sunlight at tunnel entrance, long black feature which occurs to the part of lane or car, etc. To solve this problem, a deep learning model was developed by simultaneously training the 'False Positive' data generated in the field and the labeling data. As a result, in comparison with the model that was trained only by the existing labeling data, the re-inference performance with respect to the labeling data was improved. In addition, re-inference of the 'False Positive' data shows that the number of 'False Positive' for the persons were more reduced in case of training model including many 'False Positive' data. By training of the 'False Positive' data, the capability of field application of the deep learning model was improved automatically.

Agro-Environmental Observation in a Rice Paddy under an Agrivoltaic System: Comparison with the Environment outside the System (영농형 태양광 시설 하부 논에서의 농업환경 관측 및 시설 외부 환경과의 비교)

  • Kang, Minseok;Sohn, Seungwon;Park, Juhan;Kim, Jongho;Choi, Sung-Won;Cho, Sungsik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. It is expected that agrivoltaic systems can realize climate smart agriculture by reducing evapotranspiration and methane emission due to the reduction of incident solar radiation and the consequent surface cooling effect and bring additional income to farms through solar power generation. In this study, to evaluate that agrivoltaic systems are suitable for realization of climate smart agriculture, we conducted agro-environmental observations (i.e., downward/upward shortwave/longwave radiations, air temperature, relative humidity, water temperature, soil temperature, and wind speed) in a rice paddy under an agrivoltaic system and compared with the environment outside the system using automated meteorological observing systems (AMOS). During the observation period, the spatially averaged incoming solar radiation under the agrivoltaic system was about 70% of that in the open paddy field, and clear differences in the soil and water temperatures between the paddy field under the agrivoltaic system and the open paddy field were confirmed, although the air temperatures were similar. It is required in the near future to confirm whether such environmental differences lead to a reduction in water consumption and greenhouse gas emissions by flux measurements.

Temperature Changes under Plastic Film Rain Shelter Using Different Concentration of Shading Paint in Vineyard (차광도포제 처리에 의한 포도 비가림 시설 하부 온도의 변화)

  • Jung, Sung Min;Hur, Youn Young;Im, Dong Jun;Chung, Kyung Ho
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.328-334
    • /
    • 2019
  • Shading paint (water-soluble) is one of the temperature control agents inside of a greenhouse in summer. Plastic film rain shelter is a unique system in Korean, prevents disease development vineyards, but it causes the heat inside a shelter in summer. Shading paint treatment with different shading rates (15, 25, and 35%) outside of plastic rain shelter avoided excessive heat inside. Shading paint influenced sunlight under plastic rain shelter in a different manner at each treatment. 35% of shading paint treatment reduced 45% of PPFD (Photosynthesis Photon Flux Density) than non-treatment control. Shading paint had the significance of efficiency to reduce the temperature under plastic rain shelter. 35% of shading paint treatment reduced $2^{\circ}C$ of bunch temperature than non-treatment control. However, shading paint treatment had not to control lower than ambient temperature. 35% of shading paint treatment is available to prevent excessive heat damage and poor fruit quality under plastic film rain shelter in summer in Korean vineyards.

Analyzing Driving Behavior, Road Sign Attentiveness and Recognition with Eye Tracking Data (운전자 시각행태 및 주행행태 분석기반의 결빙주의표지 개발연구)

  • Lee, Ghang Shin;Lee, Dong Min;Hwang, Soon Cheon;Kwon, Wan Taeg
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.117-132
    • /
    • 2021
  • Due to the terrain in Korea, there are many road sections passing through mountainous areas. During the winter, there is a higher risk of traffic accidents, due to black ice caused by the lack of sunlight. Despite domestic road freezing safety measures, accidents caused by road freezing results in severe traffic accidents. Under these considerations, this study analyzed whether traffic safety signs that change in response to the external temperature help drivers recognize frozen road segments. The study was conducted through analysis of the effect of the signs on a driver's perspective. For the signs under development, out of the signs designed by experts, the sign design which received the highest visibility and effectiveness evaluation ratings from the general public was selected. The sign was implemented through Virtual Reality (VR) and installed on the right side of the road to analyze the effect on gazing and driving behavior. As a result of analyzing the driver's driving behavior, a speed reduction of about 7km/h or more was found in the sign section. Therefore, It was found that the existence of the sign had a strong relationship with the rate of the drivers' speed reduction.

Evaluation of Retrieval Accuracy of NO2 Column Density from Pandora Raw Data According to Wavelength Range and Absorption Cross-section Using DOAS Method (Pandora 원시자료로부터 차등흡수분광법을 이용하여 이산화질소 칼럼 농도 산출 시 파장 구간 및 흡수단면적에 따른 산출 정확도 평가)

  • Kim, Serin;Kim, Daewon;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.215-222
    • /
    • 2022
  • In this study, the effect of wavelength range and absorption cross-section used to retrieve nitrogen dioxide (NO2) vertical column density (VCD) from Pandora was analyzed using Differential Optical Absorption Spectroscopy (DOAS). During the GEMS Map of the Air Pollution (GMAP) 2020 campaign, data from direct sunlight observation with Pandora instrument in Seosan was used, and NO2 VCD was retrieved under four conditions. The average NO2 VCD under the four conditions ranged from 1.22×1016~1.38×1016 molec. cm-2, with a maximum difference of 0.16×1016 molec. cm-2 between each condition. The fitting error averaged 3.19~9.59%, showing an error within 10% in all cases, and the RMS was 5.11×10-3~7.16×10-3 molec. cm-2. The retrieved NO2 VCD using 4 conditions shows a slope in the range of 0.98 to 1.09 and correlation of 0.96 to 0.98 in comparison with Pandonia Global Network (PGN).

Reliability Evaluation of the Estimation of Suspended Sediment Dispersion (부유사 확산예측 모형의 신뢰도 평가에 관한 연구)

  • Tac, Dae-Ho;Chung, Younjin;Jun, Eun-Ju;Yang, Joon-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.890-898
    • /
    • 2022
  • Dispersion of suspended sediment, caused by coastal and marine development, is a key item in assessing marine environmental impact as it adversely affects marine life by increasing the level of turbidity and decreasing the amount of sunlight in seawater. However, its estimation has not been reliable because of the absence of a standard for the data measurement and divergent approaches to the impact assessment. In this study, we examined the estimation models from 58 Marine Environmental Impact Statements (MEISs, 2012-2014) to identify the gaps in the assessment and devise ways of improving the estimation. We developed four index items-grid system; unit load, particle size, and settling velocit-to evaluate their reliability in the estimation. The mean reliability score of each index was overall low-25 for grid system, 60 for unit load, 34 for particle size, and 17 for settling velocity. To ensure high reliability, it is important to develop a standard guideline that defines precise measurement of suspended sediment for unit load and settling velocity by particle size, followed by a grid system with compatible size for modelling. This can improve the estimation and thus underlie coherent impact assessment of suspended sediment dispersion on marine environment.