• Title/Summary/Keyword: sums

Search Result 599, Processing Time 0.023 seconds

On the Historical investigation of Sums of Power of Consecutive Integer (연속된 정수의 멱의 합의 변천사에 대한 고찰)

  • Kang Dong-Jin;Kim Dae-Yeoul;Park Dal-Won;Seo Jong-Jin;Rim Seog-Hoo;Jang Lee-Chae
    • Journal for History of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • In 1713, J. Bernoulli first discovered the method which one can produce those formulae for the sum $\sum\limits_{\iota=1}^{n}\;\iota^k$ for any natural numbers k ([5],[6]). In this paper, we investigate for the historical background and motivation of the sums of powers of consecutive integers due to J. Bernoulli. Finally, we introduce and discuss for the subjects which are studying related to these areas in the recent.

  • PDF

Variance Components of Nested Designs (지분계획의 분산성분)

  • Choi, Jaesung
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1093-1101
    • /
    • 2015
  • This paper discusses nested design models when nesting occurs in treatment structure and design structure. Some are fixed and others are random; subsequently, the fixed factors having a nested design structure are assumed to be nested in the random factors. The treatment structure can involve random and fixed effects as well as a design structure that can involve several sizes of experimental units. This shows how to use projections for sums of squares by fitting the model in a stepwise procedure. Expectations of sums of squares are obtained via synthesis. Variance components of the nested design model are estimated by the method of moments.

ON THE WEAK LAW FOR WEIGHTED SUMS INDEXED BY RANDOM VARIABLES UNDER NEGATIVELY ASSOCIATED ARRAYS

  • Baek, Jong-Il;Lee, Dong-Myong
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.117-126
    • /
    • 2003
  • Let {$X_{nk}$\mid$1\;{\leq}\;k\;{\leq}\;n,\;n\;{\geq}\;1$} be an array of row negatively associated (NA) random variables which satisfy $P($\mid$X_{nk}$\mid$\;>\;x)\;{\leq}\;P($\mid$X$\mid$\;>\;x)$. For weighed sums ${{\Sigma}_{k=1}}^{Tn}\;a_kX_{nk}$ indexed by random variables {$T_n$\mid$n\;{\geq}$1$}, we establish a general weak law of large numbers (WLLN) of the form $({{\Sigma}_{k=1}}^{Tn}\;a_kX_{nk}\;-\;v_{[nk]})\;/b_{[an]}$ under some suitable conditions, where $\{a_n$\mid$n\;\geq\;1\},\; \{b_n$\mid$n\;\geq\;1\}$ are sequences of constants with $a_n\;>\;0,\;0\;<\;b_n\;\rightarrow \;\infty,\;n\;{\geq}\;1$, and {$v_{an}$\mid$n\;{\geq}\;1$} is an array of random variables, and the symbol [x] denotes the greatest integer in x.