• Title/Summary/Keyword: sums

Search Result 599, Processing Time 0.024 seconds

STRONG LIMIT THEOREMS FOR WEIGHTED SUMS OF NOD SEQUENCE AND EXPONENTIAL INEQUALITIES

  • Wang, Xuejun;Hu, Shuhe;Volodin, Andrei I.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.923-938
    • /
    • 2011
  • Some properties for negatively orthant dependent sequence are discussed. Some strong limit results for the weighted sums are obtained, which generalize the corresponding results for independent sequence and negatively associated sequence. At last, exponential inequalities for negatively orthant dependent sequence are presented.

SLIN FOR WEIGHTED SUMS OF STOCHASTICALLY DOMINATED PAIRWISE INDEPENDENT RANDOM VARIABLES

  • Sung, Soo-Hak
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.377-384
    • /
    • 1998
  • Let ${X_n,n \geq 1}$ be a sequence of stochatically dominated pairwise independent random variables. Let ${a_n, n \geq 1}$ and ${b_n, n \geq 1}$ be seqence of constants such that $a_n \neq 0$ and $0 < b_n \uparrow \infty$. A strong law large numbers of the form $\sum^{n}_{j=1}{a_j X_i//b_n \to 0$ almost surely is obtained.

  • PDF

ON THE COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES

  • Qiu, Dehua;Chen, Pingyan;Antonini, Rita Giuliano;Volodin, Andrei
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.379-392
    • /
    • 2013
  • A general result for the complete convergence of arrays of rowwise extended negatively dependent random variables is derived. As its applications eight corollaries for complete convergence of weighted sums for arrays of rowwise extended negatively dependent random variables are given, which extend the corresponding known results for independent case.

ON FOUR NEW MOCK THETA FUNCTIONS

  • Hu, QiuXia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.345-354
    • /
    • 2020
  • In this paper, we first give some representations for four new mock theta functions defined by Andrews [1] and Bringmann, Hikami and Lovejoy [5] using divisor sums. Then, some transformation and summation formulae for these functions and corresponding bilateral series are derived as special cases of 2𝜓2 series $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a,c;q)_n}{(b,d;q)_n}}z^n$$ and Ramanujan's sum $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a;q)_n}{(b;q)_n}}z^n$$.