On L1-convergence of Certain Trigonometric Sums with Generalized Sequence Kα

  • Kaur, Kulwinder (Department of Applied Sciences, GZS College of Engineering and Technology)
  • Received : 2003.11.11
  • Published : 2005.03.23

Abstract

In this paper a criterion for $L^1-convergence$ of a new modified sine sums is obtained by using $Ces{\grave{a}}ro$ means of integral and non-integral orders.

Keywords

References

  1. Pro. London Math. Soc. v.8 On extensions within the theory of Cesaro summability of a classical convergence theorem of Dedekind Andersen, A.F.
  2. J. London Math Soc. v.17 Note on the Bohr-Hardy theorem Bosanquet, L.S.
  3. Proc. London Math. Soc. Note on convergence and summability factors (III) Bosanquet, L.S.
  4. Georgian journal of Mathematics v.11 no.1 On $L^1$-convergence of certain Trigonometric Sums Kaur, K.;Bhatia, S.S.;Ram, B.
  5. Bull. Polon. Sci. Ser. Sci. Math. Astronom. Phys. Sur l'ordere de grandeur des coefficients de la series de Fourier - Lebesque Kolmogorov, A.N.
  6. Mat. Sbornik v.63 no.105 Some estimates for trigonometric series with quasi-convex coefficients Teljakovskii, S.A.
  7. Trigonometric Series, 1(II) Zygmund, A.