• 제목/요약/키워드: summer environment

검색결과 2,121건 처리시간 0.026초

동중국해 북부해역에서 봄과 여름동안 영양염과 엽록소의 분포특성 (The Distribution of Nutrients and Chlorophyll in the Northern East China Sea during the Spring and Summer)

  • 김동선;심정희;이정아;강영철
    • Ocean and Polar Research
    • /
    • 제27권3호
    • /
    • pp.251-263
    • /
    • 2005
  • In order to study changes in the marine ecosystem of the East China Sea derived by the global warming and construction of the Three Gorges Dam in the middle of the Changjiang, temperature, salinity, nutrients, and chlorophyll-a were studied intensively in the northern part of the East China Sea during the summer of 2003 and spring of 2004. According to the previous studies, the upwelling of the Kuroshio Current and the Changjiang resulted in a major inputs of nutrients in the East China Sea, but these two inputs may not contribute gently to a build up of nutrients in the northern East China Sea. In spring, relatively high concentrations of nitrates and phosphates were observed in the western part of the study area, which resulted from the supply of high concentrations of nutrients showing up in the surface waters as a result of vertical mixing from the ocean bottom. The concentrations of nitrates and phosphates observed in summer were lower than those in spring, since the surface waters were well stratified by the larger discharge of fresh water from the Changjiang in summer. The surface nitrate/phosphate ratios ranged from 1.3 to 16 in spring and from 1.1 to 15 in summer and were lower than the Redfield ratio of 16, indicating that the growth of phytoplankton is limited by nitrogen. This results are contrary to the previous results, in which the growth of phytoplankton was limited by phosphate in the East China Sea. The reason for this contrary result is that most nutrients in the surface waters are supplied by vertical mixing from the bottom waters with low nitrate/phosphate ratios, not directly influenced by the Changjiang with high nitrate/phosphate ratios. The depth-integrated chlorophyll observed in summer was similar to the previous results, but those measured in spring were almost twice as high as those found in previous results. The depth-integrated chlorophyll in spring was higher than that of summer, which results from high concentrations of nitrates and phosphates in the surface waters in spring due to active vertical mixing.

목포항의 수질 특성(I) - 하계의 유기물 오염과 용존산소를 중심으로 - (The Characteristics of Water Quality in Mokpo Harbour(I) - Centering on organic pollution and dissolved oxygen in summer-)

  • 김광수
    • 해양환경안전학회지
    • /
    • 제3권1호
    • /
    • pp.99-109
    • /
    • 1997
  • The in situ observations and the seawater analyses were conducted in July and August, 1996 for the purpose of describing the characteristics of organic pollution, dissolved oxygen distributions, and the evaluation of water quality in Mokpo harbour. The vertical density distribution of water column was found to be in stable structure with higher water temperature and lower salinity on surface layer at ebb tide in summer. In July, dissolved oxygen was shown to be oversaturated on surface and bottom layers, while in August, which was shown to be oversaturated on surface layer, and to be unsaturated on bottom layer as 68∼93% of saturation percentage. Dissolved oxygen of bottom layer in August was evaluated to be under the regular grades, based on Korean standards of seawater quality. In view of COD, the seawater quality of Mokpo harbour in summer was evaluated to be deteriorated due to organic wastes and graded to be the third class, and TSS of Mokpo harbour in summer was graded to be the second class, based on Korean standards of seawater quality. In particular, COD of surface layer in August was found to be under the regular grades. It is, therefore, necessary to take measures for the control of pollution loads and the proper management of seawater quality in Mokpo harbour. The distribution patterns of DO, COD, VSS and Chlorophyll-a on surface layer along the downstream center line from inner harbour to harbour entrance were similar to one another at ebb tide in August.

  • PDF

Analysis of the Correlation between Urban High Temperature Phenomenon and Air Pollution during Summer in Daegu

  • An, Eun-Ji;Kim, Hae-Dong
    • 한국환경과학회지
    • /
    • 제28권10호
    • /
    • pp.831-840
    • /
    • 2019
  • Recently, summer high temperature events caused by climate change and urban heat island phenomenon have become a serious social problem around the world. Urban areas have low albedo and huge heat storage, resulting in higher temperatures and longer lasting characteristics. To effectively consider the urban heat island measures, it is important to quantitatively grasp the impact of urban high temperatures on the society. Until now, the study of urban heat island phenomenon had been carried out focusing only on the effects of urban high temperature on human health (such as heat stroke and sleep disturbance). In this study, we focus on the effect of urban heat island phenomenon on air pollution. In particular, the relationship between high temperature phenomena in urban areas during summer and the concentration of photochemical oxidant is investigated. High concentrations of ozone during summer are confirmed to coincide with a day when the causative substances (NO2,VOCs) are high in urban areas during the early morning hours. Further, it is noted that the night urban heat island intensity is large.. Finally, although the concentration of other air pollutants has been decreasing in the long term, the concentration of photochemical oxidant gradually increases in Daegu.

3-Stage DRUM 샘플러를 이용한 광주 도심지역의 봄철과 여름철 PM2.5 원소적 조성 비교 (Elemental Composition of PM2.5 Particulate with a 3-Stage DRUM Sampler during Spring and Summer Seasons in Urban Area of Gwangju, Korea)

  • 류성윤;김영준
    • 한국대기환경학회지
    • /
    • 제21권6호
    • /
    • pp.699-708
    • /
    • 2005
  • To characterize the elemental composition of fine particles in urban area, $PM_{2.5}$ was collected by a 3-stage DRUM impactor at Gwangju during spring and summer. Time and size resolved concentrations for 19 trace elements were obtained by synchrotron X-Ray fluorescence analysis. Trace elements in summer were distributed in smaller size range compared to those in spring. Almost trace element concentrations in fine particles were highly increased during the Asian dust. In spring, soil elements such as Si, K, Ca, Ti and Fe had low enrichment factors indicating the dominant influence of soil dust. However, all elements had high enrichment factors in summer implying that these elements could be emitted from the anthropogenic sources. Factor analysis was conducted with the elemental composition data in order to identify anthropogenic sources of aerosols in urban area during spring and summer. Fine particles in spring have several sources such as soil dust originating from China continental region, coal and oil combustion, biomass burning, sea salt, ferrous and nonferrous metal sources. On the other hand, fine particles in summer were influenced by road dust, gasoline vehicle as well as coal and oil combustion, sea salt, ferrous and nonferrous metal sources.

Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions

  • Yang, Hyoju;Jung, Hyekyeng;Oh, Kyungcheol;Jeon, Jun-Min;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.803-814
    • /
    • 2021
  • A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40℃ at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50℃) and mesophilic conditions (30℃). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40℃ and 50℃, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the non-summer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.

서울 약수터의 지표세균 분포 및 16S rRNA 염기서열을 이용한 총대장균군 동정 및 계통분석 (Occurrence of Indicator Bacteria and Identification of Total Coliforms Using 16S rRNA Gene in Drinking Spring Water in Seoul)

  • 윤태호;이향;최금숙;이승주;이목영;어수미
    • 한국환경보건학회지
    • /
    • 제39권6호
    • /
    • pp.513-521
    • /
    • 2013
  • Objectives: This study was performed in order to detect indicator bacteria in drinking spring water (DSW) samples in Seoul Metropolitan City, and to identify their genus through 16S rRNA sequencing and then assessing the genetic relation of their strains. Methods: For indicator bacteria detection and identification of total coliforms, we analyzed DSW between the spring and summer seasons. In particular, DSW samples were chosen from sites repeatedly found unsatisfactory in recent years. Results: Heterotrophic plate counts of DSW in the spring and summer season were investigated in the range of 0-550 and 0-800 CFU/mL, respectively. Total coliforms of these were 0-1,900 and 0-2,100 CFU/100mL, fecal coliforms were 0-600 and 0-550 CFU/100mL, and Escherichia coli were 0-7 and 0-326 MPN/100mL. The detection ratio of fecal pollution indicators and that of fecal coliforms increased to 58.6% in the summer from 12.5% in the spring and Escherichia coli increased to 51.4% from 4.7%. As a result of genetic analysis on the isolated bacteria, the genus of total coliforms was classified in the order of Enterobacter spp. 12.7%, Serratia spp. 7.3%, E. hermanii 6.4%, Rahnella spp. 5.5%, Hafnia spp. 4.5%, Escherichia coli 3.6%, Klebsiella spp. 3.6% in the spring season. In the summer season, it was classified in order of Klebsiella spp. 16.6%, Enterobacter spp. 13.0%, Escherichia coli 11.0%, Serratia spp. 8.6%, Raoultella spp. 7.0%, Kluyvera spp. 5.6% and Citrobacter spp. 3.0%. Conclusions: The increase of fecal pollution in summer indicates that special attention to drinking DSW is required.

도시주택의 여름철 온열환경에 관한 측정실험 연구 (A Study on the Summer Thermal Environment in Korean Urban Residences)

  • 윤정숙
    • 대한가정학회지
    • /
    • 제27권1호
    • /
    • pp.71-83
    • /
    • 1989
  • This is a basic study designed to discover the most comfortable thermal environment for Korean residences. The purpose of the research is to observe and measure the summer thermal environment in Korean urban detached single family houses and apartments by utilising proposed evaluation standards and methods. The technique used involves the measurement of environmental elements, such as indoor temperature, relative humidity and radiant temperature both in detached single family houses and apartments. Also, in order to understand the resident's thermal comfort response. ASHRAE' thermal sensation 9th level, indoor temperature 5th level, and thermal discomfort 4th level in the psycho-physical voting scale (1972) was used. In conclusion, among Korean urban residences, detached single family houses provided a more stable thermal environment than apartments, as shown by physical psychological evaluations. The possible reason for such stability in detached single family houses may be the usage of reinforced concrete structures which maintain consistent temperatures.

  • PDF

팔당호의 계절별 열적 및 화학적 층화 특성 (Seasonal characteristics of thermal and chemical stratification in Lake Paldang)

  • 손주연;박진락;노혜란;유순주;임종권
    • 한국물환경학회지
    • /
    • 제36권1호
    • /
    • pp.1-13
    • /
    • 2020
  • The purpose of this study was to investigate the thermal and chemical stratification in Lake Paldang 2013-2018 weekly using Schmidt's stability index (SSI) and the index of chemical stratification (IC-i). The annual average for SSI was 19.1 g cm/㎠ with the maximum value of 45.3 g cm/㎠ in the summer and the minimum value of 4.8 g cm/㎠ in fall-winter showing seasonal differences as well as increased vertical mixing in the summer. The lake stability increased higher in 2016 as compared with the other period. The most influential factors of thermal stratification were temperature and heavy rainfall. Especially, high water temperature and a prolonged residence duration caused by reduced rainfall and inflows could result in an increase of the stratification period. While decreasing inflow and outflow at the end of the rainfall, the thermal stratification was restrengthened within 7-14 days, and then stabilized rapidly before the rainfall. IC-DO increased with high air temperature in the spring and fall-winter. However increasing sunshine duration and residence time and decreasing rate of outflow caused an increase of IC-DO in the summer. Rainfall (less than 800 mm/year) and discharge (less than 200 CMS) significantly declined in 2015 resulting in IC-DO (0.77) increased more than three times over the other years and bottom water hypoxia occurred. The SSI and IC-i used in this study could be applied to other lakes to understand changes in stratification and mixing dynamics.

Seasonal Characteristics of Fecal Sites of the Siberian Flying Squirrel Pteromys volans

  • Han, Chang Wook;Lim, Sang Jin;Park, Hee Bok;Park, Yung Chul
    • Journal of Forest and Environmental Science
    • /
    • 제34권2호
    • /
    • pp.184-187
    • /
    • 2018
  • Characteristics of fecal sites of the Siberian flying squirrel Pteromys volans was analyzed based on 132 sites of total 19 places. The fecal sites were more frequently found in winter (43.9%), and then followed by autumn (27.3%), spring (23.5%), and summer (5.3%). With the exception of summer, the fecal sites were more frequently found at the root collar than on the forked tree (p<0.01). Among 132 fecal sites, 88 sites (66.7%) were found on the rood collars and the other 44 sites (33.3%) were posited in the forked trees. Brown or red clay pellets were found at 44 fecal sites (33.4%) and 43 fecal sites (32.6%), and then black and yellow pellets were at 22 fecal sites (16.7%) and 19 fecal sites (14.3%), respectively. Green pellets were rarely found only at 4 sites (3.0%). Feces tend to have bright colors (brown, red clay and yellow) in winter and black in summer. Fecal sites with yellow pellets were much less found in all of the three seasons with the exception of winter, but highly increased in 25.4% in winter. The fecal sites with brown (33.4%) and red clay pellets (32.6%) were most frequently found through the four seasons.

Survey evaluation of thermal boundary condition in the inside and outside of double skin facade

  • Shin, Hyun-Cheol;Jang, Gun-Eik
    • KIEAE Journal
    • /
    • 제15권4호
    • /
    • pp.29-35
    • /
    • 2015
  • Purpose: Double skin facade is a representative advantageous passive technology of building skin in the aspect of energy saving and environment improvement, reduces heat loss with buffer space in winter season and enhances indoor air and comfort of residents by activating natural ventilation in mid-season. However, in summer season, temperature increase in the intermediate space due to solar energy from exterior transparent skin could be a potential problem; also, relatively weak buoyancy of air caused by low density difference between double-skin facade could increase cooling load as air of intermediate space in high temperature hangs. However, proof data is insufficient to objectify such phenomenon. Method: In this study, researchers surveyed air temperature of intermediate space and airflow and diagnosed its cause targeting on applied multistory facade in the building which gives thermal uncomfort to residents. Also, the researchers produced Solar-air heat transfer coefficient meter, measured thermal boundary condition of double-skin facade, and presented the result of measurement as an objectified verification material regarding overheating phenomenon in the intermediate space of double-skin facade in summer season. Result: Inefficient condition was verified that total heat increases and overheating due to insufficient natural ventilation in multistory facade. In addition, logic behind preceding research was objectified and verified regarding high temperature phenomenon in the intermediate space which could increase cooling load in summer season.