• Title/Summary/Keyword: summer environment

Search Result 2,130, Processing Time 0.025 seconds

The Growth Characteristic of the Main Afforestation Species Using the Change of the Annual Ring in Uiseong Area (연륜 변화를 이용한 의성지역 주요 조림수종의 생장특성)

  • Lee Dong-Sup;Kim Dong-Geun;Bea Kwan-Ho;Suh Hyoung-Min
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.274-281
    • /
    • 2005
  • The climate of the Uisong Area is wet in the heat of summer and cold and dry in winter, The climate is highly consistent. The typical forest soil of the Uisong Area has an acidity of pH 4.5-5.6. The thickness of soil A layers is thin to an average of 10-20 cm and is a typical brown forest soil type. The growth characteristic of this climate and soil environment is as follows. In the case of Larix leptolepis, it takes 5-9 years to reach 6 cm diameter, The annual growth rate falls off greatly at an age of 17-19 years. The change of annual rings is more apparent on the north slopes compared with the east and northeast slopes. Pinus rigida takes 7-9 years to reach a 6 cm diameter. Annual growth rates of Pinus rigida fall greatly when age reaches 19 years. The change of annual ring growth of Pinus rigida was most apparent in the west and northeast slopes compared with the south and east slopes. In the case of Pinus koraiensis, the change of the annual ring width according to the characteristics of the slope is not important. Pinus koraiensis takes 6 yearsto reach the 6cm diameter, and annual growth rate fell off at age 19 years. In the case of Quercus acutissima, the growth of the valley trees is more stable than for trees grown at the mountain base. Annual growth rate of Quercus autissima fell off 19 years after planting. Ring growth of Robinia pseudo-acasia on northeast slopes appears much like that on northwest slopes. In conclusion, the main silviculture species reaches a 6 cm diameter in 5-9 years of growth, and the annual growth rate begins to fall between years 13 and 19 in the Uisong Area.

Time-series Variation of Sea Surface Salinity in the Southwestern East Sea (동해 남서부 해역 표층염분의 시계열 변동)

  • Jeong, Hee-Dong;Kim, Sang-Woo;Lim, Jin-Wook;Choi, Yong-Kyu;Park, Jong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.163-177
    • /
    • 2013
  • An instrumented ferry made two transects per day across two current systems which are the North Korean Cold Current and the East Korean Warm Current over the years 2012-2013 from Gangneung to Ulleungdo in the southwestern East Sea. Seawater properties of these transects were measured with high spatial and temporal resolution for an extended period of time. Here the salinity records from the transects with the oceanographic observation data from East Sea Fisheries Institute of NFRDI, AVISO daily current chart and GOCI Chlorophyll-a image in 2012 and 2013 are used to study the time-series variation of salinity at the surface. The high salinity section with the range of 33.15~34.12 occurred on the transect mainly in the middle of eddy, and western boundary of strong northward current from June to October. We can found low salinity waters in both sides of the high salinity section. It is estimated that the western low salinity waters with the range of 30.58~33.20 accompanied by southward current were derived from the NKCC and the eastern waters with the range of 31.30~33.24 accompanied by northward current were derived from the Tsushima Surface Water. The lowest salinity of NKCC is confirmed in this study as 30.36. It is found that the western waters below 33.00 extended extremely toward the east about 110 km area from Gangneung and toward the south around Jukbyon coastal area as a 5~10 m layer. We can find its volume of low saline waters transport is not neglectable compared with that of Tsushima Current region in the western part of the East Sea. In this study we named it as the North Korean Low Saline Surface Water in summer.

Studies on Growth Responses of Tomato and Environmental Characteristics of Various Rain Shelter Types (간이시설 형태별 환경특성과 토마토 생장반응 연구)

  • 김현환;조삼증;이시영;권영삼;신만균;남윤일;최규홍
    • Journal of Bio-Environment Control
    • /
    • v.2 no.2
    • /
    • pp.89-98
    • /
    • 1993
  • The purpose of this study was to investigate crop growth responses under various rain shelters which were devised to improve the indoor environment in summer season. For developing the proper type of rain shelter, the improved rain shelters with the roof of saw - tooth type(saw-tooth type) and 3 span-arch type(improved arch type) were compared with the conventional one with the roof of single arch type(conventional arch type) and no rain shelter (open field ). The results were summarized as follows ; 1. The air temperature in the improved arch type was 4$^{\circ}C$ and 1$^{\circ}C$ lower than those in the conventional arch type and the saw - tooth type, respectively. 2. The air temperature drop by the evaporative cooling + improved drainage was 1.3$^{\circ}C$ which was 0.9$^{\circ}C$lower than that by the improved drainage only. 3. The effect of labour saving in the saw-tooth type was superior to any other type because its frames were used as props and the labour for ventilation was not needed. 4. The highest marketable yield of tomato was 4,897kg/10a in the improved arch type and the total leaf areas which related to photosynthesis was the largest in the saw - tooth type. 5. The improved arch type was proved to be proper to raise yield potential. The effect of the underground environment treatment on the quality and quantity of vegetable showed to be outstanding in the saw- tooth type with the evaporative cooling + improved drainage, and in the improved and conventional arch type with the trickle improved drainage. 6. In conclusion, the saw - tooth type and the improved arch type were proved to be labour saving rain shelters and the indoor environments in both types were better than that in the conventional arch type.

  • PDF

Environmental factors Affecting Distribution of Heterotrophic Bacteria and Chlorophyll a Content in The (마산만과 행암만 수층의 종속양양세균과 엽록소 a 함량 분포에 미치는 환경요인)

  • Sohn Jae-Hak;Ahn Tae-Young;Kim Sang -Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.65-75
    • /
    • 2000
  • The roles of environmental factors affecting on heterotrophic bacterial distribution at Hangam Bay and Masan Bay in which occurred frequently red tide, during June to November 1996 were investigated. The aquatic environment of Masan Bay and Haengam Bay showed difference in the contents of inorganic nutrients. Haengam Bay may be defined as nitrogen limited aquatic environment. On the other hand, Masan Bay appeared to the appropriate N/P molar ratio of mean 15.9 during the periods of study. By the results of simple regression, chlorophyll a showed significant correlation with precipitation (r=0.813, P<0.05) and phosphorus (r=0.846, P<0.05) at Haengam Bay, but not showed significant correlation with parameters at Masan Bay. The heterotrophic bacteria showed significant correlation with many environmental parameters at Masan Bay (Precipitation, r=0.990, P<0.01 : NO₃-N, r=0.901, P<0.05 : Dissolved inorganic nitrogen, r=0.899, P<0.05 ; N/P molar ratio, r=0.952, P<0.05 : Salinity, r: -0.934, P<0.05) than Haengam Bay (SiO₃-Si, r=0.960, P<0.01). By the results of multiple regression, the chlorophyll a was varied with only 2 factors in Masan Bay (R²=0.100) and 3 factor in Haengam Bay (R²=0.903). The major factor which affected to chlorophyll a was SiO₃-Si (R²%=67.8) in Masan Bay, and -N/P (R²%=37.6) in Haengam Bay. The heterotrophic bacteria were varied with 4 factors in Masan Bay (R²=100) and 2 factor in Haengam Bay (R²%=0.878). The major factor, which affected to heterotrophic bacteria, was SiO₃-Si (R²%=42.3) and salinity (R²%=32.1) in Masan Bay, and SiO₃-Si (R²%=76.3) in Haengam Bay. Resultingly, the influx of freshwater in Masan and Haengam Bay was enriched in inorganic nutrients, and plays an important role in the change of heteroterophic bacteria and chlorophyll a during early summer to autumn.

  • PDF

Evaluation of Treatment Efficiencies of Pollutants in Boknae Bio-Park Constructed Wetlands (복내바이오파크 인공습지의 오염물질 처리효율 평가)

  • Seo, Dong-Cheol;Kang, Se-Won;Kim, Hyun-Ook;Han, Myung-Ja;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Yeong-Jae;Choi, Ik-Won;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.263-270
    • /
    • 2011
  • Boknae Bio-park is a free water surface constructed wetlands to remove non-point source pollution. Boknae Bio-park constructed wetlands (CWs) consist of forebay, wetlands ($1^{st}$, $2^{nd}$, and $3^{rd}$ wetlands), and micropool. The concentrations of BOD, SS, T-N and T-P in inflow were 1.87-4.23, 5.2-24.0, 4.94-15.59 and $0.10-0.75mg\;L^{-1}$ in Boknae Bio-park CWs from April to December in 2008, respectively. The removal rates of BOD, SS, T-N and T-P in Boknae Bio-park CWs were 26, 43, 62 and 83%, respectively. The removal rates of BOD and SS in the spring and summer were higher than those in other seasons. The removal rates of T-N and T-P on spring were slightly higher than those in other seasons. The amounts of pollutants removal in Boknae Bio-park CWs were higher in the order of forebay > wetlands > micropool for BOD, wetlands > forebay > micropool for SS and wetlands > forebay > micropool for T-N. The amount of T-P removal was not significant different in all areas.

Incorporation Effect of Green Manure Crops on Improvement of Soil Environment on Saemangeum Reclaimed Land during Sorghum×Sudangrass Hybrid Cultivation (수수×수단그라스 재배시 녹비작물 혼입에 따른 새만금간척지 토양환경 개선 효과)

  • Yang, Chang-Hyu;Lee, Jang-Hee;Baek, Nan-Hyun;Jeong, Jae-Hyeok;Cho, Kwang-Min;Lee, Sang-Bok;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.744-748
    • /
    • 2012
  • This study was carried out to investigate the incorporation effect of green manure crops (GMC) such as the hairy vetch on improvement of soil environment in reclaimed land during sorghum${\times}$sudangrass hybrid (SSH) cultivation over the past three years from 2009 to 2011. Plots consisted of conventional fertilization (CF) and incorporation of GMC were divided by rates of additional nitrogen fertilizer ($100kg\;ha^{-1}$) and decreased percentage of 30 50 70 100 fertilization in addition to non nitrogen fertilization (NNF). Soil physico-chemical properties, growth and yield potential were examined. The results were as follows. The testing soil was showed strong alkaline saline soil with low organic matter contents and less available phosphate while exchangeable sodium and magnesium were higher. Soil salinity was increased during cultivation of summer crop. However, SSH was not affected by salt content. The fresh weight of GMC at incorporation time was $18,345kg\;ha^{-1}$. Content of total nitrogen at incorporation time was 3.09% and the C/N ratio was 12.8. Fresh and dry matter yield of SSH were higher in the order of 30%, CF, N50%, N70%d, N100%, and NNF. Fresh and dry matter yield of SSH increased in the order of CF ($55,050kg\;ha^{-1}$, $16,250kg\;ha^{-1}$), N contents from 30% to 9%. Soil physical properties, such as bulk density were decrease with incoporation of GMC, while porosity was increased. Soil chemical properties, such as pH was decreased while content of exchangeable calcium, available phosphate, and organic matter were increased. Also contents of exchangeable sodium and potassium were decreased with incorporation of GMC than those before experiment. Thus, we assumed that incorporation of hairy vetch was more effective that can lead to reduce chemical nitrogen fertilizer and to improve soil environment in cultivating SSH on Saemangeum reclaimed land.

Changes of Sedimentary Environment in the Tidal Flat of the Dammed Yeongsan River Estuary, Southwestern Coast of Korea (영산강 하구 갯벌의 퇴적환경 변화)

  • Kim, Young-Gil;Lee, Myong Sun;Chang, Jin Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.687-697
    • /
    • 2019
  • By monitoring sediment grain size and level variation of tidal flat surface for 6 years (2005-2011), and also by mooring TISDOS (tidal-flat sediment dynamics observation system) on the low intertidal flat in 2008, we investigated the sedimentary environment of tidal flat in the dammed Yeongsan River Estuary. The tidal flat of the Yeongsan River Estuary lost 82 % of its area because of coastal development projects, and a narrow tidal flat below mean sea level now remains. Most of the tidal flat sediments are composed of silt up to 70-94 %, and show the characteristics of clay deficiency and silt dominance. This is closely related with the coastal development, which led to the destruction of high tidal flats where most mud settled, and the modification of tidal current patterns. Moreover, the estuarine tidal-flat sediments reveal seasonal variation. They are coarse with abundant silt during windy autumn to spring, fine with abundant clay during the less-windy and high-discharge summer. This phenomenon indicates that the behavior of sediment particles on the low intertidal flats of the Yeongsan River Estuary is influenced by wind waves for silt and fresh water discharge and the tidal process for clay. Monitoring results of the altitude of tidal flat surface showed that the study area had eroded at an average rate of -2.6 cm/y during the period of 2005-2011, and also that an unusual deposition with a rate of 4 cm/y occurred in 2010. The erosion can be explained by an increased tidal amplitude and a strengthened ebb-dominant tidal asymmetry after the construction of an estuary dike and the Yeongam Kumho Seawall. The deposition in 2010 seems to have been closely related to the mass production of suspended materials from dredging of the estuary.

Estimating Carrying Capacity of Lake Shihwa for Water Quality Management (수질관리를 위한 시화호의 환경용량 산정)

  • Kim, Hyung-Chul;Choi, Woo-Jeung;Lee, Won-Chan;Koo, Jun-Ho;Lee, Pil-Yong;Park, Sung-Eun;Hong, Seok-Jin;Jang, Ju-Hyoung
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.571-581
    • /
    • 2007
  • The mechanism of water pollution in Lake Shihwa, one of highly eutrophicated artificial lakes in Korea, has been studied using a numerical 3D physical-biochemical coupled model. In this study, the model was applied to estimate the contribution of land-based pollutant load to water quality of heavily polluted Lake Shihwa. The chemical oxygen demand(COD) was adopted as an index of the lake water quality, and the spatial distribution of an average COD concentration during the summer from 1999 to 2000 was simulated by the model. The simulated COD showed a good agreement with the observed data. According to reproducibility of COD, the high-est levels between 8 and 9 mg/L were shown at the inner site of the lake with inflow of many rivers and ditches, while the lowest was found to be about 5 mg/L at the southwestern site near to dike gate. In the pre-diction of water quality of Lake Shihwa, COD showed still higher levels than 3 mg/L in case of reduction of 95% for land-based pollutant load. This suggests that the curtailment of land-based pollutant load is not only sufficient but the improvement of sediment quality or the increase of seawater exchange should be considered together to improve a water quality in Lake Shihwa.

Analysis on the Characteristics of Ventilation and Cooling for Greenhouses Constructed in Reclaimed Lands (간척지 온실의 환기 및 냉방 특성 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. The climatic conditions around seven major reclaimed land areas with a plan to install advanced horticultural complexes in Korea were analyzed. The characteristics of natural ventilation and temperature rise through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. Results of comparing the ventilation rate of the greenhouse according to the presence or absence of plants showed the greenhouse with plants had the lower ventilation rate, but the smaller rise of indoor temperature due to the evapotranspiration of plants. In the greenhouse with plants, the number of air changes was in the range of 0.3 to 0.9 volumes/min and the average was 0.7 volumes/min. The rise of indoor temperature relative to outdoor temperature was in the range of 1 to $5^{\circ}C$ and the average $2.5^{\circ}C$. The natural ventilation performance of the experimental greenhouse constructed in the reclaimed land almost satisfied the recommended ventilation rate in summer and the rise of indoor temperature relative to outdoor temperature did not deviate considerably from the cultivation environment of plants. Therefore, it was determined that the greenhouse cultivation in Saemangeum reclaimed land is possible with only natural ventilation systems without cooling facilities. As the reclaimed land is located in the seaside, the wind is stronger than the inland area, and the fog is frequent. This strong wind speed increases the ventilation rate of greenhouses, which is considered to be a factor for reducing the cooling load. In addition, since the fog duration is remarkably longer than that of inland area, the seasonal cooling load is expected to decrease, which is considered to be advantageous in terms of the operation cost of cooling facilities.

A study on the soil $CO_2$ Efflux in Quercus acutissima stand at Mt. Bulam urban nature park (불암산 도시자연공원 상수리나무군락의 토양호흡 특성 연구)

  • Kim, Jeong-Seob;Kong, Seok-Jun;Yang, Keum-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.6
    • /
    • pp.762-768
    • /
    • 2014
  • The purpose of this study is to analyze the soil $CO_2$ efflux and micro-climate of a preserved forest area located in a Mt. bulam urban nature park Quercus acutissima stand from June 2013 to May 2014. The research showed that the soil and heterotrophic $CO_2$ efflux were $28.14{\pm}7.99$ to $582.47{\pm}318.51$ and $12.32{\pm}8.04$ to $415.71{\pm}159.92mg\;CO_2{\cdot}m^{-2}{\cdot}h^{-1}$, respectively. In addition the seasonal soil $CO_2$ efflux of summer, autumn, winter, spring were 1169.1, 454.81, 72.08 and $494.23g\;CO_2{\cdot}m^{-2}{\cdot}month^{-1}$, respectively. On the other hand, the seasonal heterotrophic $CO_2$ efflux were 526.20, 340.09, 45.13 and $374.9g\;CO_2{\cdot}m^{-2}{\cdot}month^{-1}$, respectively. Moreover, the annual soil and heterotrophic $CO_2$ efflux was found to be 2190.22 and $1286.33g\;CO_2{\cdot}m^{-2}{\cdot}yr^{-1}$, respectively. The exponential function was also utilized for the regression analysis in order to correlate the environmental factors with the soil and heterotrophic $CO_2$ efflux. It was found out that both air and soil temperatures were positively correlated with the soil and heterotrophic $CO_2$ efflux. However, the amount of solar radiation and soil moisture has showed low correlation for both types of $CO_2$ efflux. Contribution of root $CO_2$ efflux to total soil $CO_2$ efflux in this Quercus acutissima stand was 33.60%.