• Title/Summary/Keyword: sum-modified laplacian

Search Result 6, Processing Time 0.022 seconds

Image Focal Pont Usig Modified Mask Processing (변형 마스크 프로세싱을 이용한 영상초점 판별)

  • 이훈주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.127-132
    • /
    • 2000
  • Though the increment of using computer vision system, there are lots of difficulties to measure precisely because of measurement error or distortion phenomenon. Among these reasons, the distortion of edge is dominant reason which is occurred by the blurred image. So, the problem of clear judgment about image focal point is very important. We must fix the discrimination criteria which is collected by image recognition of precise focus. To solve these problems, we compare with make processing methods using image intensity gradient, laplacian, and sum -modified laplacian operator. These experimental results showed modified mask processing method is effective.

  • PDF

An Efficient Auto-focusing Algorithm for Video Measuring System (비디오 측정 시스템을 위한 효율적인 자동 초점 조절 알고리즘)

  • Hahn Kwang-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.9
    • /
    • pp.878-887
    • /
    • 2005
  • The passive focusing method finds the in-focus position by analyzing images captured by a camera. In this paper, we propose an efficient passive auto-focusing algorithm for video measuring systems. The sum of modified Laplacian of Gaussian is used to calculate focus values from images and Gaussian curve fitting is applied to estimate the optimal in-focus position. The Proposed method is tested for various objects and illuminations. The test result is compared with other methods to verify accuracy and efficiency of the proposed algorithm.

DCT Block Partitioning Method based on Sum Modified Laplacian for JPEG-XL Image Coding (JPEG XL 이미지 부호화를 위한 SML 기반의 DCT 블록 분할 방법)

  • Cho, Joonhyung;Kwon, Oh-Jin;Choi, Seungcheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.314-317
    • /
    • 2020
  • JPEG 위원회는 JPEG XL 이라 불리우는 차세대 이미지 코딩의 표준화를 진행하였다. JPEG XL 은 기존 JPEG 에서 사용하는 8×8 크기의 블록뿐만 아니라, 최소 2×2 부터 최대 32×32 크기의 블록을 유동적으로 사용함으로써 부호화 성능의 개선을 가능하게 한다. 부호화기 구조 내의 DCT 블록 분할은 부호화 성능을 결정하는 주요한 요소 중 하나이다. 본 논문에서는 SML(Sum Modified Laplacian)을 기반으로 하는 DCT 블록 분할 방법을 제안한다. 제안하는 방법은 이미지에서 상대적으로 변동이 적거나 균일한 영역을 선택하기 위해 SML 을 활용하였으며, 이 영역에서는 큰 DCT 블록으로 부호화하여 기존 부호화기의 성능을 개선하였다.

  • PDF

Automated Visual Inspection System of Double Gear using Inspection System (더블기어 자동 시각 검사 시스템 실계 및 구현)

  • Lee, Young Kyo;Kim, Young Po
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.4
    • /
    • pp.81-88
    • /
    • 2011
  • Mini Double Gears Frame is critical part of PDP and also produces couple hundred thousand every month. In the process of mass production, product inspection is very important process. Double Gear, one of the part of machine, was inspected by human eyes which caused mistakes and slow progress. To achieve the speed and accuracy the system was compensated by vision system which is inspecting automatically. The focus value is measured based on the fact that high contrast images have much high frequency edge information. High frequency term of the image is extracted using the high-pass filter and the sum of the high frequency term is used as the focus value. We used a Gaussian smoothing filter to reduce the noise and then measures the focus value using the modified Laplacian filter called a Sum modified Laplacian Focus values for the various lens positions are calculated and the position with the maximum focus value is decided as the focused position. The focus values calculated in various lens position showed the Gaussian distribution. We proposed a method to estimate the best focus position using the Gaussian curve fitting. Focus values of the uniform interval lens positions are calculated and the values are used to estimate the Gaussian distribution parameters to find the best focus position.

3D Model Reconstruction Algorithm Using a Focus Measure Based on Higher Order Statistics (고차 통계 초점 척도를 이용한 3D 모델 복원 알고리즘)

  • Lee, Joo-Hyun;Yoon, Hyeon-Ju;Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • This paper presents a SFF(shape from focus) algorithm using a new focus measure based on higher order statistics for the exact depth estimation. Since conventional SFF-based 3D depth reconstruction algorithms used SML(sum of modified Laplacian) as the focus measure, their performance is strongly depended on the image characteristics. These are efficient only for the rich texture and well focused images. Therefore, this paper adopts a new focus measure using HOS(higher order statistics), in order to extract the focus value for relatively poor texture and focused images. The initial best focus area map is generated by the measure. Thereafter, the area refinement, thinning, and corner detection methods are successively applied for the extraction of the locally best focus points. Finally, a 3D model from the carefully selected points is reconstructed by Delaunay triangulation.

A Novel Automatic Block-based Multi-focus Image Fusion via Genetic Algorithm

  • Yang, Yong;Zheng, Wenjuan;Huang, Shuying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1671-1689
    • /
    • 2013
  • The key issue of block-based multi-focus image fusion is to determine the size of the sub-block because different sizes of the sub-block will lead to different fusion effects. To solve this problem, this paper presents a novel genetic algorithm (GA) based multi-focus image fusion method, in which the block size can be automatically found. In our method, the Sum-modified-Laplacian (SML) is selected as an evaluation criterion to measure the clarity of the image sub-block, and the edge information retention is employed to calculate the fitness of each individual. Then, through the selection, crossover and mutation procedures of the GA, we can obtain the optimal solution for the sub-block, which is finally used to fuse the images. Experimental results show that the proposed method outperforms the traditional methods, including the average, gradient pyramid, discrete wavelet transform (DWT), shift invariant DWT (SIDWT) and two existing GA-based methods in terms of both the visual subjective evaluation and the objective evaluation.