• Title/Summary/Keyword: sulphate resistance

Search Result 35, Processing Time 0.025 seconds

Resistance of Alkali Activated Slag Cement Mortar to Sulfuric Acid Attack (알칼리 활성화 슬래그 시멘트 모르타르의 내황산성)

  • Min, Kyung-San;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.633-638
    • /
    • 2007
  • The setting time of alkali activated slag cement tends to be much faster than ordinary Portland cement, and its compressive strength had been higher from the 1 day but became lower than that of the cement on the 28 days. According to the results of the surface observation, weight loss, compressed strength, and erosion depth tests on the sulphuric acid solution. It has been drawn that alkali activated slag cement has a higher sulphate resistance than ordinary Portland cement, and in particular, the alkali activated slag cement added 5 wt% alumina cement has little deterioration on the sulphuric acid solution. The reason why the alkali activated slag cement has higher sulphate resistance than other hardened cement pastes is that it has no $Ca(OH)_2$ reactive to sulphate ion, and there is little $CaSO_4{\cdot}2H_2O$ production causing volume expansion, unlike other pastes. And it is supposed that $Al(OH)_3$ hydrates with high sulphate resistance, which is produced by adding the alumina cement increases the sulfate resistance.

Sustainable self compacting acid and sulphate resistance RAC by two stage mixing approaches

  • Rajhans, Puja;Kisku, Nishikant;Nayak, Sanket;Panda, Sarat Kumar
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.55-70
    • /
    • 2020
  • In this research article, acid resistance, sulphate resistance and sorptivity of self compacted concrete (SCC) prepared from C&D waste have been discussed. To improve the above properties of self compacted recycled aggregate concrete (SCRAC) along with mechanical and durability properties, different two stage mixing approaches (TSMA and TSMAsfc) were followed. In the proposed two stage mixing approach (TSMAsfc), silica fume, a proportional amount of cement and a proportional amount of water were mixed in premix stage which fills the pores and cracks of recycled aggregate concrete (RAC). The concrete specimen prepared using above mixing approaches were immersed in 1% concentration of sulphuric acid (H2SO4) and magnesium sulphate (MgSO4) solution for 28, 90 and 180 days for evaluating the acid resistance of SCRAC. Experimental results concluded that the proposed two stage mixing approach (TSMAsfc) is most suitable for acid resistance and sulphate resistance in terms of weight loss and strength loss due to the elimination of pores and cracks in the interfacial transition zone (ITZ). In modified two stage mixing approach, the pores and cracks of recycled concrete aggregate (RCA) were filled up and make ITZs of SCRAC stronger. Microstructure analysis was carried out to justify the reason of improvement of ITZs by electron probe micro analyser (EPMA) analysis. X-ray mapping was also done to know the presence of strength contributing elements presents in the concrete sample. It was established that SCRAC with modified mixing approach have shown improved results in terms of acid resistance, sulphate resistance, sorptivity and mechanical properties.

Antibiotics and Their Optimum Concentration for Axenic Culture of Marine Microalgae (해양미세조류의 무균배양을 위한 항생제의 종류 및 최적 농도)

  • Youn, Joo-Yeon;Hur, Sung-Bum
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.229-234
    • /
    • 2007
  • This study was to determine the extent of bacteria contamination and resistance to various antibiotics used commonly in microalgal culture. Seven different dose levels of chloramphenicol, dihydrostreptomycin sulphate, neomycin, penicillin G, streptomycin sulphate, penicillin G + streptomycin sulphate, and penicillin G + streptomycin sulphate + chloramphenicol were added to each culture of microalgae. The lethal effects on microalgae and bacteria were the highest in chloramphenicol and the lowest in penicillin G. The axenic culture of bacillariophyceae and dinophyceae was more difficult than that of chlorophyceae and haptophyceae because of their complicate external morphology. The efficient antibiotics and their concentrations for axenic cultures varied with microalgal species. The optimum quantity for antibiotic treatments were 2,000 ppm of dihydrostreptomycin for Chlorella ellipsoidea, neomycin 500 ppm of Isochrysis galbana and Heterosigma ahashiwo, hloramphenicol 500 ppm of Cyclotella didymus, and dihydrostreptomycin sulphate and neomycin 6,000 ppm of Thalassiosira allenii.

Influence of polyvinylpyrrolidone on rebar corrosion in sulphate solution

  • Gurten, A. Ali;Bayol, Emel;Kayakirilmaz, Kadriye;Erbil, Mehmet
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.77-87
    • /
    • 2009
  • This paper reports the results of an experimental investigation of the polyvinylpyrrolidone (PVP) influence on the steel reinforcement corrosion and compressive strength of concretes in sulphate medium. The effect of admixture of PVP in concrete on the corrosion resistance of steel reinforced concrete was assessed by measuring electrochemical test during 60 days immersion in two different external solutions. AC impedance spectrum indicated that the resistance of PVP mixed electrodes were higher than those without PVP. The compressive strength of concrete specimens containing PVP was measured and an increase of 19%~24% was observed.

Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete

  • Smarzewski, Piotr;Barnat-Hunek, Danuta
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.315-325
    • /
    • 2017
  • The purpose of the paper is to determine the influence of two widely used steel fibers and polypropylene fibers on the sulphate crystallization resistance, freeze-thaw resistance and surface wettability of ultra-high performance concrete (UHPC). Tests were carried out on cubes and cylinders of plain UHPC and fiber reinforced UHPC with varying contents ranging from 0.25 to 1% steel fibers and/or polypropylene fibers. Extensive data from the salt resistance test, frost resistance test, dynamic modulus of elasticity test before and after freezing-thawing, as well as the contact angle test were recorded and analyzed. Fiber hybridization relatively increased the resistance to salt crystallization and freeze-thaw resistance of UHPC in comparison with a single type of fiber in UHPC at the same fiber volume fraction. The experimental results indicate that hybrid fibers can significantly improve the adhesion properties and reduce the wettability of the UHPC surface.

Performance of eco-friendly mortar mixes against aggressive environments

  • Saha, Suman;Rajasekaran, Chandrasekaran;Gupta, Prateek
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • Past research efforts already established geopolymer as an environment-friendly alternative binder system for ordinary Portland cement (OPC) and recycled aggregate is also one of the promising alternative for natural aggregates. In this study, an effort was made to produce eco-friendly mortar mixes using geopolymer as binder and recycled fine aggregate (RFA) partially and study the resistance ability of these mortar mixes against the aggressive environments. To form the geopolymer binder, 70% fly ash, 30% ground granulated blast furnace slag (GGBS) and alkaline solution comprising of sodium silicate solution and 14M sodium hydroxide solution with a ratio of 1.5 were used. The ratio of alkaline liquid to binder (AL/B) was also considered as 0.4 and 0.6. In order to determine the resistance ability against aggressive environmental conditions, acid attack test, sulphate attack test and rapid chloride permeability test were conducted. Change in mass, change in compressive strength of the specimens after the immersion in acid/sulphate solution for a period of 28, 56, 90 and 120 days has been presented and discussed in this study. Results indicated that the incorporation of RFA leads to the reduction in compressive strength. Even though strength reduction was observed, eco-friendly mortar mixes containing geopolymer as binder and RFA as fine aggregate performed better when it was produced with AL/B ratio of 0.6.

Effects of waste marble and glass powders on concrete properties and performance

  • Nouraldin Abunassar;Tulin Akcaoglu
    • Advances in concrete construction
    • /
    • v.17 no.4
    • /
    • pp.211-220
    • /
    • 2024
  • Concrete, consisting mainly of cement, water and aggregates; is the most used construction material all over the world. Cement manufacturing industry is one of the carbon dioxide producing sources that contributes to global warming. Therefore, in the last few years, there is a growing interest in using waste materials and by-products as cement replacement materials. Using these kinds of materials as a part of cement replacement reduces the air pollution, cost and also enhances some properties of concretes. In the present work, marble dust (MD) was examined as a partial cement replacement material with seven proportions as 0%, 10%, 20%, 30%, 40%, 50%, 60% and glass powder (GP) was used as an additive, 8% by cement weight, in a 0.55 water-binder ratio concrete. In order to evaluate their effects; workability, strength (compressive, flexural and split tensile), alkalinity, sulphate resistance and ultrasonic pulse velocity tests were performed. Experimental results indicated that with MD replacement and GP addition; there is a loss in the workability but improvement in mechanical properties. With 10% replacement of MD compressive, flexural and tensile strengths increased by 10.7%, 6.2% and 5.3% respectively. Moreover, up to 30% replacement of MD reasonable strength values were obtained.

A Study of the Electroless Ni-W-B Depsition on Alumina Ceramics (Alumina Ceramics상의 무전해 Ni-W-B 도금에 관한 연구)

  • 유능희;강성군
    • Journal of Surface Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.161-167
    • /
    • 1989
  • Effects of bath composition on electroless deposition of Ni-W-B from sulphate solution were invesrigated in terms of deposition kinetics, electro resistivity and composition of deposit film. The microstruigated and crystataine structure of the films were also studied using a scanning electron microscope and X-ray diffractometer. The deposition rate increased linearly with increasing the concentration of nickel sulphate in bath solution, wheras the rate decreasing with sodium citrate. The rate was also affected by sodium tungstate, which was maaximum at the concentration of 0.06 M/1 in sodium tungstate, The content of W in the deposit increased with increased with increasing the sodium citrate had on opposite effect on the composition of W and B in the deposit. The crystal change film from armorphous to cryatallicne nature by heat treatments was proved by the reduction of specific resistance and X-ray diffration.

  • PDF

Application of Antibiotic Resistance Test for the Recognition of Korean Native Rhizobium japonicum Strain (한국(韓國) 토착대두(土着大豆) 근류균(根瘤菌)의 균주(菌株) 인식(認識)을 위한 항생제(抗生劑) 내성(耐性) 검정법(檢定法)의 응용(應用))

  • Lim, Sun-Uk;Kim, Min-Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.239-244
    • /
    • 1989
  • This work was for the elucidation of heterogeneity in a natural population of Rhizobium japonicum existing in Seoul National University's Experiment Field and of sensitivities of R. japonicum isolates for several antibiotics by using a method based on intrinsic antibiotic resistance (IAR). In addition, the suitability of IAR method for the recognition of R. japonicum strain was elucidated. Twenty seven isolates from various soybean cultivars cultivated at SNU's Experiment Field were tested to 4 antibiotics (streptomycin sulphate, kanamycin sulphate, ampicillin, oxytetracycline);There were 21 different IAR patterns among 27 isolates. It demonstrated diverse distribution of R. japonicum strains in SNU's Experiment Field. Their growth was inhibited at from a low concentration of about $1{\mu}g/ml$ to a high concentration of $400{\mu}g/ml$ for streptomycin sulphate, ampicillin, and oxytetracyclin. For kanamycin sulphate, on the contrary, all 27 isolates showed their growth inhibitances at below the concentration of $12.5{\mu}g/ml$. Two isolates identified as different strains from each other by the previous seroimmunological tests showed the same sensitivities for 4 antibiotics, and it seemed that IAR method was not perfect for the exact recognition of R. japonicum strain.

  • PDF