• Title/Summary/Keyword: sulfate diffusion

Search Result 100, Processing Time 0.027 seconds

Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

  • Take, S.;Yoshinaga, S.;Yanagita, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.259-264
    • /
    • 2016
  • With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from $800^{\circ}C$ to $350^{\circ}C$) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

Diffusion Characteristics for Chloride Ion of Concrete Subjected to Sulfate Attack (황산염 침투를 받은 콘크리트의 염소이온 확산특성)

  • Park, Jae-Im;Bae, Su-Ho;Yu, Jae-Won;Lee, Kwang-Myong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.213-214
    • /
    • 2010
  • An objective of this experimental research is to investigate the diffusion characteristics for chloride ion of concrete subjected to sulfate attack. For this purpose, concretes with three types of cement such as ordinary portland cement(OPC), binary blended cement(BBC), and ternary blended cement(TBC) containing mineral admixtures were made for water-binder ratios of 32% and 43%. The concrete specimens were immersed in sulfate solution for 365 days, and then the resistance against chloride ion penetration of them were estimated by using NT BUILD 492. It was observed from the test results that the resistance to chloride ion penetration of concrete subjected to sulfate attack was greatly decreased than that of standard curing concrete under the same age.

  • PDF

Modeling of time-varying stress in concrete under axial loading and sulfate attack

  • Yin, Guang-Ji;Zuo, Xiao-Bao;Tang, Yu-Juan;Ayinde, Olawale;Ding, Dong-Nan
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.143-152
    • /
    • 2017
  • This paper has numerically investigated the changes of loading-induced stress in concrete with the corrosion time in the sulfate-containing environment. Firstly, based on Fick's law and reaction kinetics, a diffusion-reaction equation of sulfate ion in concrete is proposed, and it is numerically solved to obtain the spatial and temporal distribution of sulfate ion concentration in concrete by the finite difference method. Secondly, by fitting the existed experimental data of concrete in sodium sulfate solutions, the chemical damage of concrete associated with sulfate ion concentration and corrosion time is quantitatively presented. Thirdly, depending on the plastic-damage mechanics, while considering the influence of sulfate attack on concrete properties, a simplified chemo-mechanical damage model, with stress-based plasticity and strain-driven damage, for concrete under axial loading and sulfate attack is determined by introducing the chemical damage degree. Finally, an axially compressed concrete prism immersed into the sodium sulfate solution is regarded as an object to investigate the time-varying stress in concrete subjected to the couplings of axial loading and sulfate attack.

Self-Diffusion Coefficients of Colloidal Association Structures in ADS/OTAC Mixed Aqueous Solutions by Pulsed (Field) Gradient Spin Echo-NMR (Pulsed (Field) Gradient Spin Echo (PGSE) NMR에 의한 ADS/OTAC 혼합 수용액에서의 콜로이드 회합체의 자가 확산 계수)

  • Kim, Hong-Un;Lim, Kyung-Hee;Kim, Eun-Hee;Cheong, Chae-Joon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.339-348
    • /
    • 2002
  • Self-diffusion coefficients of colloidal ass9Ciation structures in the aqueous solutions of anionic ammonium dodecyl sulfate (ADS) and cationic octadecyltrimethylammonium chloride (OTAC) surfactants were measured by pulsed-gradient spin echo NMR. The results were interpreted on the basis of the ADS/OTAC/water phase diagram. Crossing the phase boundaries, significant changes in self diffusion coefficients were observed and well correlated to the phase diagram. For the micelles their apparent radii were obtained from Stokes-Einstein equation. Their values were 15 for the ADS micelles and 54 ${{\AA}}$ for the OTAC micelles, respectively. For vesicles which were formed spontaneously at different relative amounts of the surfactants and total surfactant concentrations, the radius was measured as 50 to 200 nm. This result is in fair agreement with those by TEM and light scattering.

Probe and Matrix Diffusion of Polystyrene Particle and Labeled Polyallylamine Hydrochlorate

  • Choi, Young-Wook;Sohn, Dae-Won
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.205-205
    • /
    • 2006
  • Adsorption behaviors of positively charged matrix (PAH) onto negatively charged probe (sulfate PS particle) were investigated using DLS (dynamic light scattering) and FPR (fluorescence photobleaching recovery) as view points of matrix and salt concentration. The system experienced sharp decrease of diffusion (flocculation) at dilute condition while the system underwent gradual decrease of diffusion above semi-dilute concentration. With FPR and viscometry experiments, we revealed the probe behaviors in polyelectrolyte solution were strongly affected by the coil overlap concentration (0.5 g/L PAH concentration).

  • PDF

Durability performance of concrete containing Saudi natural pozzolans as supplementary cementitious material

  • Al-Amoudi, Omar S. Baghabra;Ahmad, Shamsad;Khan, Saad M.S.;Maslehuddin, Mohammed
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.119-126
    • /
    • 2019
  • This paper reports an experimental investigation conducted to evaluate the durability performance of concrete mixtures prepared utilizing blends of Type I Portland cement (OPC) and natural pozzolans (NPs) obtained from three different sources in Saudi Arabia. The control concrete mixture containing OPC alone as the binder and three concrete mixtures incorporating NPs were prepared keeping water/binder ratio of 0.4 (by weight), binder content of $370kg/m^3$, and fine/total aggregate ratio of 0.38 (by weight) invariant. The compressive strength and durability properties that included depth of water penetration, depth of carbonation, chloride diffusion coefficient, and resistance to reinforcement corrosion and sulfate attack were determined. Results of this study indicate that at all ages, the compressive strength of NP-admixed concrete mixtures was slightly less than that of the concrete containing OPC alone. However, the concrete mixtures containing NP exhibited lower depth of water penetration and chloride diffusion coefficient and more resistance to reinforcement corrosion and sulfate attack as compared to OPC. NP-admixed concrete showed relatively more depth of carbonation than OPC when subjected to accelerated carbonation. The results of this investigation indicates the viability of utilizing of Saudi natural pozzolans for improving the durability characteristics of concrete subjected to chloride and sulfate exposures.

Transfer of Cupric Sulfate across Rat Small Intestine, in Vitro and Effect of Chelating Agents on It's Transfer

  • Kim, Chong-Kil;Choi, Seung-Gi;Rho, Young-Soo
    • Archives of Pharmacal Research
    • /
    • v.11 no.2
    • /
    • pp.81-86
    • /
    • 1988
  • The transfer of cupric sulfate across the rat small intestine in vitro was studied by perfusion method using the segments of everted rat small intestine. Copper transport was approximately propotional to the metal concentration in the mucosal solution and no difference was observed in the metal transport among rat duodenum, jejunum and ileum. It was suggested from these results that copper transport across the rat small intestine would occur by passive diffusion. The effect of various chelating agents on copper transport across the rat small intestine n vitro and its uptake by the intestine were also studied. Copper transport was greatly enhanced in the presence of EDTA and NTA. Copper uptake decreased to a greater extent in the presence of EPTA and NTA.

  • PDF

Manufacture and Properties of Gypsum-Wood (Gypsum-Wood의 제조와 성질)

  • Lee, Jong-Shin;Kim, Soung-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • Gypsum-wood composites were made by introducing inorganic substances into wood using calcium chloride, first treating solution, and sodium sulfate, secondary treating solution, by double diffusion process under atmospheric pressure at room temperature. The process conducted as follows: water saturated specimens were soaked in calcium chloride solutions at several concentration. Then the specimens were soaked further in saturated sodium sulfate solution, and they were leached in flowing tap water for 24h. To attain sufficient weight percent gain (WPG) values, the suitable concentration of calcium chloride and soaking time in saturated sodium sulfate solution were 20% and 48h, respectively. Inorganic substances were produced mainly in the lumina of tracheides. It was made sure that these substances were dihydrate gypsum($CaSO_4$ $2H_2O$) by X -ray microanalysis (SEM-EDX). The composites had good fire resistance due to low heat transfer rate of gypsum formed in wood. However, the composites had little decay resistances, because they showed high weight losses by test fungi attacks.

  • PDF

Studies on the Natural Dyes(11) -Dyeing Properties of Cochineal Colors for Wool Fibers- (천연염료에 관한 연구(11) -코치닐 색소의 양모섬유 염색성-)

  • 조경래
    • Textile Coloration and Finishing
    • /
    • v.11 no.4
    • /
    • pp.39-49
    • /
    • 1999
  • In order to study the properties of cochineal colors, uv-visible spectra of cochineal colors solution, dyeing properties on the wool in several dyeing conditions and thermodynamic parameters were investigated. UV-visible spectra of cochineal colors solution showed hypochromic effect with the lapse of irradiation time but bathochromic shift with decreasing acidity of solution and addition of metallic ions. The concentration of cochineal colors in wool fiber increased with the increase of dyeing temperature, time, and acidity of initial dyebath. The value of apparent diffusion coefficients and standard affinities of dyeing decreased with the increase of dyeing temperature. The standard heats of dyeing$(\Delta{H}^\circ)$ and variation of entropy$(\Delta{S}^\circ)$ increased with the increase of concentration of initial dyebath. The activation energy$(E_a)$ were calculated to be 1.399~2.595kcal/mol in condition of 6~1%(o.w.f) dyebath. Wool fabrics were dyed reddish blue by iron sulfate, copper sulfate, aluminum acetate and tannic acid, and red by tin chloride, respectively. Lightfastness of wool fabrics dyed by cochineal colors were increased by mordant treatment, especially copper sulfate and iron sulfate treatment.

  • PDF

Purification of Therapeutic Serums of Snake Anti-Venom with Caprylic Acid

  • Norouznejad, Nilofar;Zolfagharian, Hossein;Babaie, Mahdi;Ghobeh, Maryam
    • Journal of Pharmacopuncture
    • /
    • v.25 no.2
    • /
    • pp.114-120
    • /
    • 2022
  • Objectives: Antivenom serums have been used extensively for over a century and are the only effective treatment option for snake bites and other dangerous animal envenomations. In therapeutic serum centers, a wide range of antivenoms is made from animal serum, mainly equine and sheep, that are immunized with single or multiple venoms. This work aimed to use caprylic acid (CA) to purify therapeutic snake antivenom. Methods: Plasma was obtained from equine immunized with a mixture of venoms. Immunized plasma was obtained by precipitation of different concentrations (2-5%) of CA. This methodology was compared to that based on ammonium sulfate (AS) precipitation. Sediment plasma proteins were purified by ion-exchange chromatography. Protein assay, SDSPAGE, and agar gel diffusion were performed. Results: The total protein precipitation with AS was higher than precipitation with CA, but the best results were obtained when CA was added to the plasma until a final CA concentration of 5% was reached. Chromatography and electrophoresis indicated a stronger band for the 5% CA, and the gel diffusion assay showed antigen-antibody interaction in the purified serum. Conclusion: The use of CA compared to the routine method for purifying hyperimmune serums is a practical and cost-effective method for preparing and producing therapeutic serums. It constitutes a potentially valuable technology for alleviating the critical shortage of antivenom in Iran.