• Title/Summary/Keyword: suitable site for ginseng

Search Result 6, Processing Time 0.019 seconds

Geographic information system-based identification of suitable cultivation sites for wood-cultivated ginseng

  • Beon, Mu Sup;Park, Jun Ho;Kang, Hag Mo;Cho, Sung Jong;Kim, Hyun
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.491-495
    • /
    • 2013
  • Wood-cultivated ginseng, including roots in its dried form, is produced in forest land without using artificial facilities such as light barriers. To identify suitable sites for the propagation of wood-cultivated ginseng, factor combination technique (FCT) and linear combination technique (LCT) were used with geographic information system and the results were superimposed onto an actual wood-cultivated ginseng plantation. The LCT more extensively searched for suitable sites of cultivation than that by the FCT; further, the LCT probed wide areas considering the predominance of precipitous mountains in Korea. In addition, the LCT showed the much higher degree of overlap with the actual cultivation sites; therefore, the LCT more comprehensively reflects the cultivator's intention for site selection. On the other hand, the inclusion of additional factors for the selection of suitable cultivation sites and experts' opinions may enhance the effectiveness and accuracy of the LCT for site application.

Soil properties of cultivation sites for mountain-cultivated ginseng at local level

  • Kim, Choonsig;Choo, Gap Chul;Cho, Hyun Seo;Lim, Jong Teak
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.76-80
    • /
    • 2015
  • Background: Identifying suitable site for growing mountain-cultivated ginseng is a concern for ginseng producers. This study was conducted to evaluate the soil properties of cultivation sites for mountain-cultivated ginseng in Hamyang-gun, which is one of the most well-known areas for mountain-cultivated ginseng in Korea. Methods: The sampling plots from 30 sites were randomly selected on or near the center of the ginseng growing sites in July and August 2009. Soil samples for the soil properties analysis were collected from the top 20 cm at five randomly selected points. Results: Mountain-cultivated ginseng was grown in soils that varied greatly in soil properties on coniferous, mixed, and deciduous broad-leaved stand sites of elevations between > 200mand < 1,000 m. The soil bulk density was higher in Pinus densiflora than in Larix leptolepis stand sites and higher in the < 700-m sites than in > 700-m sites. Soil pH was unaffected by the type of stand sites (pH 4.35-4.55), whereas the high-elevation sites of > 700mwere strongly acidified, with pH 4.19. The organic carbon and total nitrogen content were lower in the P. densiflora stand sites than in the deciduous broad-leaved stand sites. Available phosphorus was low in all of the stand sites. The exchangeable cationwas generally higher in the mixed and low-elevation sites than in the P. densiflora and high-elevation sites, respectively. Conclusion: These results indicate that mountain-cultivated ginseng in Korea is able to grow in very acidic, nutrient-depleted forest soils.

ANALYTICAL APPLICATIONS OF NEW PORTABLE NEAR INFRARED (NIR) SPECTROMETER SYSTEM

  • Ahn, Jhii-Weon;Kang, Na-Roo;Lim, Hung-Rang;Lee, Jung-Hun;Woo, Young-Ah;Kim, Hyo-Jin
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1122-1122
    • /
    • 2001
  • A compact and handhold near infrared (NIR) system using microspectrometer was developed. This system was suitable not only in the laboratory, but also in the field or in the process. This system was first applied for classification of geographical origin of herbal medicine such as ginseng and sesame. To identify the origin of ginseng on site, the portable NIR system is more suitable for real field application. For this study, using the compact NIR system, soft independent modeling of class analogies (SIMCA) with 1100-1750 nm NIR spectra was utilized for classification of geographical origin (Korea and China) of both ginseng and sesame. The accuracy of results is more than 90%. Quantitative analysis for petroleum such as toluene, benzene, tri-methyl benzene, and ethyl benzene was performed with partial least squares (PLS) regression with NIR 1100-1750 nm spectra. This study showed that the NIR method and gas chromatography (GC), which is a standard method, have good correlations. Furthermore, the ash content of Cornu Cervi Parvum was analyzed and the accuracy was confirmed by the developed compact NIR system.

  • PDF

The Correlation between Growth Characteristics and Location Environment of Wild-simulated Ginseng (Panax ginseng C.A. Meyer) (산양삼 생육특성과 입지환경 간의 상관관계)

  • Kim, Kiyoon;Um, Yurry;Jeong, Dae-Hui;Kim, Hyun-Jun;Kim, Mahn-Jo;Jeon, Kwon-Seok
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.463-470
    • /
    • 2019
  • Wild-simulated ginseng is requires standard establishment on location environment for long-term and eco-friendly cultivation. The this study was carried out to investigate the correlation between growth characteristics and location environment of wild-simulated ginseng for selection of suitable cultivation area. Samples were collected from a 9 site of wild-simulated cultivation area and examined growth characteristics and location environment. Correlation coefficient between growth characteristics and location environment was analyzed using Spearman's rank correlation. The growth of wild-simulated ginseng was shown significantly higher in Geochang and Hamyang cultivation area. The results of correlation analysis was shown significantly correlation with percentage of conifer, total diameter at breast height, soil pH, K, Ca and Mg. The results of this study was clearly investigated the correlation between growth characteristics and location environment of wild-simulated ginseng, which is considered to will provide understanding for selection suitable cultivation area of wild-simulated ginseng.

Depletion of Phosphorus in Mountain Soil and Growth Stimulation of Panax ginseng by Phosphorus Enrichment

  • Choi, Yong-Eui;Yi, Myong-Jong;You, Kyung-Ha;Bae, Kee-Hwa;Han, Jung-Yeon;Yi, Jae-Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.2
    • /
    • pp.170-177
    • /
    • 2009
  • There are remarkable differences in growth and morphological characters of roots between mountain and field cultivated Panax ginseng. Growth of root in mountain cultivated ginseng was much slower than that of field cultivated ginseng. However, the factor affecting the retarded growth in mountain ginseng was not known. Soil analysis revealed that phosphorus (P) content of mountain soil was exceptionally low at least ten-fold lower compared to that of field soil. Thus, we suggest that low availability of P in mountain soil may be one of the limiting factors for growth of ginseng in mountain soil environment. We had monitored the growth of ginseng plants after one and three years of phosphate fertilizer application. Three kinds of phosphate fertilizers: fused magnesium phosphate, fused superphosphate, and single superphosphate were applied to mountain soil. Application of phosphate fertilizers increased the fresh-, dry weight, and diameter of ginseng roots and resulted in increased P accumulation in roots. These results demonstrate that slow growth of ginseng in mountain soil environment might be attributed to the low P content in mountain soil. Thus, analysis of P amount in mountain soil will be a good indicator for the selection of suitable site the ginseng cultivation in forest.

Analysis of Good Agricultural Practices (GAP) in Panax ginseng C.A. Mayer (인삼의 GAP (우수농산물인증) 관련요소 분석)

  • Yu, Yong-Man;Oh, She-Chan;Sung, Bong-Jae;Kim, Hyun-Ho;Youn, Young-Nam
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.220-226
    • /
    • 2007
  • For the analysis of hazard factors and the development of GAP (Good Agricultural Practices) Ginseng, 10 ginseng cultural farms wished certified GAP were selected at Geumsan-gun area, a representative site of ginseng cultivation in Korea. In order to verify the safety of GAP ginseng, possible contamination of pesticide and heavy metal residues, and microbial hazard were analyzed. Soil and water around ginseng cultivation field, and ginseng were investigated. Eighty-one pesticides including carbendazim were used as typical pesticide against plant pathogens and insect pests of ginseng plant and general crops. There was no excess the maximum residue limit (MRL) in residue figure of the soil. Including the residue figure of the arsenic (0.81 ml/kg) and 7 other heavy metals was also suitable to cultivate the ginseng plant. The irrigation water and dilution water for pesticide application were also safety level for GAP. Fresh ginsengs from the farms were sampled and investigated pesticide residues and contaminations of bacteria. Among 23 pesticides tested, we didn't detect any kinds of pesticide residues, but tolclofos-methyl was frequently found in the other ginseng field. On the investigation of microorganism hazards, 2 gram negative bacteria and 1 gram positive bacterium were found in the fresh ginseng. Number of total bacteria was $1.5{\times}10^3$ cfu/ml, which was less than the other agriculture products. At these results, 10 selected ginseng farms were good cultural places for GAP ginseng production and the ginseng cultured from Geumsan-gun area were a good safe far human.