• Title/Summary/Keyword: successive iteration

Search Result 47, Processing Time 0.028 seconds

Existence of Solutions for the Semilinear Fuzzy Integrodifferential Equations using by Successive Iteration

  • Kwun, Young-Chel;Kim, Mi-Ju;Lee, Bu-Young;Park, Jin-Han
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.543-548
    • /
    • 2008
  • This paper is to investigate the existence theorem for the semilinear fuzzy integrodifferential equation in $E_N$ by using the concept of fuzzy number whose values are normal, convex, upper semicontinuous and compactly supported interval in $E_N$. Main tool is successive iteration method.

Existence of Solutions for the Semilinear Fuzzy Integrodifferential Equations (준선형 퍼지적분미분방정식에 대한 해의 존재성)

  • Gwon, Yeong-Cheol;Kim, Mi-Ju;Lee, Bu-Yeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.26-28
    • /
    • 2008
  • This paper is to investigate the existence theorem for the semilinear fuzzy integrodifferential equation in ${E_N}$ by using the concept of fuzzy number whose values are normal, convex, upper semicontinuous and compactly supported interval in ${E_N}$. Main tool is successive iteration method.

  • PDF

A Study on the Methods for Solving the Theodorsen Equation for Numerical Conformal Mapping

  • Song, Eun-Jee
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.66-70
    • /
    • 2012
  • Conformal mapping has been a familiar tool of science and engineering for generations. Determination of a conformal map from the unit disk onto the Jordan region is reduced to solving the Theodorsen equation, which is an integral equation for boundary correspondence functions. There are many methods for solving the Theodorsen equation. It is the goal of numerical conformal mapping to find methods that are at once fast, accurate, and reliable. In this paper, we analyze Niethammer’s solution based on successive over-relaxation (SOR) iteration and Wegmann’s solution based on Newton iteration, and compare them to determine which one is more effective. Through several numerical experiments with these two methods, we can see that Niethammer’s method is more effective than Wegmann’s when the degree of the problem is low and Wegmann’s method is more effective than Niethammer’s when the degree of the problem is high.

Successive Iteration of Geometrical-Optics for Diffracted Fields (기하광학 반복적용에 의한 회절파 계산)

  • Hwang, Churl-Kew;Kim, Se-Yun;Ra, Jung-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.2
    • /
    • pp.41-55
    • /
    • 1989
  • Successive iteration of geometrical optics(GO)is suggested to calculate wedge diffraction fields. For a wedge and given source, the GO field may be obtained when the fields by the half spaces are found and the shadow regions are determined. Furthermore, one may caluculate the sources which are equivalent to the discontinuities of the GO field along the shadow boundaries and form a new wedge problem with the equivalent sources instead of the original one. It is shown that the field by the wedge and the equivalent sources equals to the diffraction field which GO requires for the complete solution. Also, it is shown that the field generated by the equivalent sources in the unbounded space, or the incident field in the new wedge problem, equls to the diffraction field approximated by the physical optics. The new wedge problem is solved here by another application of the GO to approximate the diffraction field and the result is compared with that by the physical optics. For a validity of the successive iteration of GO , infinite iteration of GO is performed analytically and the convergence is examined ofr conducting wedges, of which the exact solution is available.

  • PDF

ACCELERATION OF MACHINE LEARNING ALGORITHMS BY TCHEBYCHEV ITERATION TECHNIQUE

  • LEVIN, MIKHAIL P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.15-28
    • /
    • 2018
  • Recently Machine Learning algorithms are widely used to process Big Data in various applications and a lot of these applications are executed in run time. Therefore the speed of Machine Learning algorithms is a critical issue in these applications. However the most of modern iteration Machine Learning algorithms use a successive iteration technique well-known in Numerical Linear Algebra. But this technique has a very low convergence, needs a lot of iterations to get solution of considering problems and therefore a lot of time for processing even on modern multi-core computers and clusters. Tchebychev iteration technique is well-known in Numerical Linear Algebra as an attractive candidate to decrease the number of iterations in Machine Learning iteration algorithms and also to decrease the running time of these algorithms those is very important especially in run time applications. In this paper we consider the usage of Tchebychev iterations for acceleration of well-known K-Means and SVM (Support Vector Machine) clustering algorithms in Machine Leaning. Some examples of usage of our approach on modern multi-core computers under Apache Spark framework will be considered and discussed.

STRONG CONVERGENCE OF AN IMPLICIT ITERATION PROCESS FOR A FINITE FAMILY OF STRONG SUCCESSIVELY $\Phi$-PSEUDOCONTRACTIVE MAPS

  • Chen, Rudong;Miao, Qian
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.105-110
    • /
    • 2008
  • The aim of this paper is to prove convergence of implicit iteration process to a common fixed point for a finite family of strong successive $\Phi$-pseudocontractive mappings. The results presented in this paper extend and improve the corresponding results of S. S. Chang [On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 313(2006), 273-283], M. O. Osilike[Implicit iteration process for common fixed points of a finite finite family of strictly pseudocontractive maps, Appl. Math. Comput. 189(2) (2007), 1058-1065].

  • PDF

NUMERICAL SIMULATIONS FOR THE CONTRACTION FLOW USING GRID GENERATION

  • Salem, S.A.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.383-405
    • /
    • 2004
  • We study the incomprssible Navier Stokes equations for the flow inside contraction geometry. The governing equations are expressed in the vorticity-stream function formulations. A rectangular computational domain is arised by elliptic grid generation technique. The numerical solution is based on a technique of automatic numerical generation of acurvilinear coordinate system by transforming the governing equation into computational plane. The transformed equations are approximated using central differences and solved simultaneously by successive over relaxation iteration. The time dependent of the vorticity equation solved by using explicit marching procedure. We will apply the technique on several irregular-shapes.

Approximating Coupled Solutions of Coupled PBVPs of Non-linear First Order Ordinary Differential Equations

  • Dhage, Bapurao Chandrabhan
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.221-233
    • /
    • 2016
  • The present paper proposes a new monotone iteration method for existence as well as approximation of the coupled solutions for a coupled periodic boundary value problem of first order ordinary nonlinear differential equations. A new hybrid coupled fixed point theorem involving the Dhage iteration principle is proved in a partially ordered normed linear space and applied to the coupled periodic boundary value problems for proving the main existence and approximation results of this paper. An algorithm for the coupled solutions is developed and it is shown that the sequences of successive approximations defined in a certain way converge monotonically to the coupled solutions of the related differential equations under some suitable mixed hybrid conditions. A numerical example is also indicated to illustrate the abstract theory developed in the paper.

S-I model of horizontal jet grouting reinforcement for soft soil

  • Zhang, Ning;Li, Zhongyin;Ma, Qingsong;Ma, Tianchi;Niu, Xiaodong;Liu, Xixi;Feng, Tao
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1029-1038
    • /
    • 2018
  • A superposition-iteration (S-I) model is proposed to simulate the jet grouting pre-reinforcing impact for a shallow-buried tunnel. The common model is deduced by theoretical (force equilibrium) analysis and then transformed into the numerical formulation. After applying it to an actual engineering problem, the most obvious deficiency was found to be continuous error accumulation, even when the parameters change slightly. In order to address this problem, a superposition-iteration model is developed based on the basic assumption and superposition theory. First, the additional deflection between two successive excavation steps is determined. This is caused by the disappearance of the supporting force in the excavated zone and the soil pressure in the disturbed zone. Consequently, the final deflection can be obtained by repeatedly superposing the additional deflection to the initial deflection in the previous steps. The analytical solution is then determined with the boundary conditions. The superposition-iteration model is thus established. This model was then applied and found to be suitable for real-life engineering applications. During the calculation, the error induced by the ill-conditioned problem of the matrix is easily addressed. The precision of this model is greater compared to previous models. The sensitivity factors and their impact are determined through this superposition-iteration model.

Analysis of cross-talk effects in volume holographic interconnections using perturbative integral expansion method

  • Jin, Sang-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.58-63
    • /
    • 1998
  • Cross-talk effects in high-density volume holographic interconnections are investigated using perturbative iteration method of the integral form of Maxwell's wave equation. In this method, the paraxial approximation and negligence of backward scattering introduced in conventional coupled mode theory is not assumed. Interaction geometries consisting of non-coplanar light waves and multiple index gratings are studied. Arbitrary light polarization is considered. Systematic analysis of cross-talk effects due to multiple index gratings is performed in increasing level of diffraction orders corresponding to successive iterations. Some numerical examples are given for first and third order diffraction.