• Title/Summary/Keyword: successive decoding

Search Result 46, Processing Time 0.02 seconds

Recent Successive Cancellation Decoding Methods for Polar Codes

  • Choi, Soyeon;Lee, Youngjoo;Yoo, Hoyoung
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.2
    • /
    • pp.74-80
    • /
    • 2020
  • Due to its superior error correcting performance with affordable hardware complexity, the Polar code becomes one of the most important error correction codes (ECCs) and now intensively examined to check its applicability in various fields. However, Successive Cancellation (SC) decoding that brings the advanced Successive Cancellation List (SCL) decoding suffers from the long latency due to the nature of serial processing limiting the practical implementation. To mitigate this problem, many decoding architectures, mainly divided into pruning and parallel decoding, are presented in previous manuscripts. In this paper, we compare the recent SC decoding architectures and analyze them using a tree structure.

Comparison on Recent Decoding Methods for Polar Codes based on Successive-Cancellation Decoding (연속 제거 복호기반의 최신 극 부호 복호기법 비교)

  • Choi, Soyeon;Yoo, Hoyoung
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.550-558
    • /
    • 2020
  • Successive cancellation (SC) decoding that is one of the decoding algorithms for polar codes has long decoding latency and low throughput because of the nature of successive decoding. To reduce the latency and increase the throughput, various decoding structures for polar codes are presented. In this paper, we compare the previous decoding structures and analyze them by dividing into two types, pruning and multi-path decoders. Decoders for applying pruning are representative of SSC (simplified SC), Fast-SSC and redundant-LLR structures, and decoders with multi-path are representative of 2-bit SC and redundant-LLR structures. All the previous structures are compared in terms decoding latency and hardware area, and according to the comparison, the syndrome check based decoder has the lowest latency and redundant-LLR decoder has the highest hardware efficiency.

Approaching Near-Capacity on a Multi-Antenna Channel using Successive Decoding and Interference Cancellation Receivers

  • Sellathurai, Mathini;Guinand, Paul;Lodge, John
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.116-123
    • /
    • 2003
  • In this paper, we address the problem of designing multirate codes for a multiple-input and multiple-output (MIMO) system by restricting the receiver to be a successive decoding and interference cancellation type, when each of the antennas is encoded independently. Furthermore, it is assumed that the receiver knows the instantaneous fading channel states but the transmitter does not have access to them. It is well known that, in theory, minimummean- square error (MMSE) based successive decoding of multiple access (in multi-user communications) and MIMO channels achieves the total channel capacity. However, for this scheme to perform optimally, the optimal rates of each antenna (per-antenna rates) must be known at the transmitter. We show that the optimal per-antenna rates at the transmitter can be estimated using only the statistical characteristics of the MIMO channel in time-varying Rayleigh MIMO channel environments. Based on the results, multirate codes are designed using punctured turbo codes for a horizontal codedMIMOsystem. Simulation results show performances within about one to two dBs of MIMO channel capacity.

Successive Cancellation Decoding of Polar Codes : Channel Synthesis and Decomposition (극 부호의 연속 제거 복호 : 채널의 합성과 분리)

  • Lee, Moon-Ho;Li, Jun;Park, Ju-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.24-36
    • /
    • 2011
  • In this paper, we verify the channel synthesis and decomposition of polar codes using successive cancellation decoding algorithm over binary discrete memoryless symmetric channel by modifying Arikan's algebraic formular on encoding and decoding of polar codes. In addition, we found that information bits are sent by efficiently consisting of polar codes with their size $2^n$ through polarizing matrix ${G_2}^{{\otimes}n}$ over binary discrete memoryless symmetric channel W. Expecially, if $N{\geq}2$, the complexity of Arikan's encoding and decoding for polar codes is O($Nlog_2N$). Furthermore, we found that polar codes are one of the solution to the challenging problems for the multipoint communication.

Impact of Channel Estimation Errors on BER Performance of Single-User Decoding NOMA System

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2020
  • In the fifth generation (5G) and beyond 5G (B5G) mobile communication, non-orthogonal multiple access (NOMA) has attracted great attention due to higher spectral efficiency and massive connectivity. We investigate the impacts of the channel estimation errors on the bit-error rate (BER) of NOMA, especially with the single-user decoding (SUD) receiver, which does not perform successive interference cancellation (SIC), in contrast to the conventional SIC NOMA scheme. First, an analytical expression of the BER for SUD NOMA with channel estimation errors is derived. Then, it is demonstrated that the BER performance degrades severely up to the power allocation less than about 20%. Additionally, we show that for the fixed power allocation of 10% in such power allocation range, the signal-to-noise (SNR) loss owing to channel estimation errors is about 5 dB. As a consequence, the channel estimation error should be considered for the design of the SUD NOMA scheme.

On the (n, m, k)-Cast Capacity of Wireless Ad Hoc Networks

  • Kim, Hyun-Chul;Sadjadpour, Hamid R.;Garcia-Luna-Aceves, Jose Joaquin
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.511-517
    • /
    • 2011
  • The capacity of wireless ad-hoc networks is analyzed for all kinds of information dissemination based on single and multiple packet reception schemes under the physical model. To represent the general information dissemination scheme, we use (n, m, k)-cast model [1] where n, m, and k (k ${\leq}$ m) are the number of nodes, destinations and closest destinations that actually receive packets from the source in each (n, m, k)-cast group, respectively. We first consider point-to-point communication, which implies single packet reception between transmitter-receiver pairs and compute the (n, m, k)-cast communications. Next, the achievable throughput capacity is computed when receiver nodes are endowed with multipacket reception (MPR) capability. We adopt maximum likelihood decoding (MLD) and successive interference cancellation as optimal and suboptimal decoding schemes for MPR. We also demonstrate that physical and protocol models for MPR render the same capacity when we utilize MLD for decoding.

A QOC Signal Detection Method for Spatially Multiplexed MIMO Systems (공간다중화 MIMO 시스템을 위한 QOC 신호검출 기법)

  • Im, Tae-Ho;Kim, Jae-Kwon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.771-777
    • /
    • 2010
  • This paper proposes a new signal detection method, called QR-OSIC with Candidates (QOC) method, for spatially multiplexed multiple input multiple output (MIMO) systems. By using the ordered successive interference cancellation (OSIC) algorithm and the maximum likelihood (ML) metric, the proposed method achieves near-ML performance without requiring a large number of candidates. Although the proposed method can be used for both hard and soft decoding systems, it is especially useful for soft decoding systems since the LLR values for all the bits can be efficiently computed without using LLR estimation. The proposed method is also suitable for VLSI implementation since it leads to fixed throughput system.

A Buffer-Aided Successive Relaying Technique with a Priori Decoding Information (선행 복호 정보를 활용한 버퍼기반 연쇄적 중계 기법)

  • Lee, Byeong Su;Jung, Bang Chul;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.275-280
    • /
    • 2016
  • In this paper, we propose a novel relay selection technique which utilizes a priori decoding information at relays for buffer-aided successive relaying networks. In the conventional relaying schemes, a single relay pair is selected for receiving data from the source and transmitting data to the destination. In the proposed technique, however, all relays except the relay selected for transmitting data to the destination try to decode the received signal from the source, and they store the data if they succeed decoding. The proposed technique selects the relay such that it can succeed its own transmission and it maximizes the number of relays successfully decoding the data from the source at the same time. It is shown that the proposed relaying technique significantly outperforms the conventional buffer-aided relaying schemes in terms of outage probability through extensive computer simulations.

Pipelined Successive Interference Cancellation Schemes with Soft/Hard Tentative Decision Functions for DS/CDMA Systems (DS/CDMA 시스템에서 연/경판정 함수를 적용한 파이프라인화된 직렬 간섭 제어 기법)

  • 홍대기;백이현;김성연;원세호;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.11A
    • /
    • pp.1652-1660
    • /
    • 2000
  • 본 논문에서는 DS/CDMA (Direct Sequence/Code Division Multipe Access) 시스템에서 임시 판정 함수로서 연판정 함수와 경판정 함수를 적용한 파이프라인화된 직렬 간섭 제어 구조(PSIC, Pipelined Successive Interference Cancellation)의 성능을 수식적으로 분석하고, 모의 실험을 통하여 검증한다. PSIC 구조는 다단 직렬 간섭 제거 구조(MSIC, Multistage Successive Interference Cancellation)가 가지는 복호지연(decoding delay)의 문제를 해결하기 위해 파이프라인 구조를 MSIC에 적용한 것이다. 제안된PSIC 구조는 하드웨어의 복잡도(hardwar complexity)를 희생하여 비트 오율(BER, Bit Error Rate)의 증가 없이 MSIC에서 발생하는 복호 지연을 줄일 수 있다. 또한 제안된 PSIC 구조에서 연판정 함수와 경판정 함수를 각 간섭 제거 단(Cancellation stage)에서의 임시 판정 함수로 사용하여 얻게 되는 PSIC 구조들의 성능을 비교한다. 분석 및 실험 결과에 의하면 제안되 PSIC 구조에서는 경판정 함수를 사용할때의 성능이 연판정 함수를 사용할때의 성능보다 우수함을 알 수 있었다.

  • PDF

On the Construction of Polar Codes for Rate Adaptive Distributed Source Coding (부호율 적응적 분산 소스 부호화를 위한 극부호의 설계)

  • Kim, Jaeyoel;Kim, Jong-Hwan;Trang, Vu Thi Thuy;Kim, Sang-Hyo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.3-10
    • /
    • 2015
  • Application of polar codes to rate-adaptive asymmetric Slepian-Wolf coding is considered. We propose a method of constructing polar codes which supports rate adaptivity. The proposed polar distributed source coding with successive cancellation list decoding performs closer to the Slepian-Wolf bound than the low density parity check accumulate (LDPCA) codes in the same framework.