• Title/Summary/Keyword: subwavelength structure

Search Result 22, Processing Time 0.029 seconds

Homogeneous Dual Composite Right/Left-Handed Metamaterial Using Subwavelength Defected Ground Structure(DGS) (Subwavelength 결함접지구조(defected grounded structure : DGS)를 이용한 Homogeneous Dual Composite Right/Left-Handed 메타물질 구현)

  • Park, Woo-Young;Lim, Sung-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2242-2246
    • /
    • 2009
  • In this paper, a homogeneous dual composite right/left-handed (D-CRLH) transmission line (TL) is proposed by using a defected ground structure (DGS) on the ground plane. In order to satisfy a homogeneity condition of metamaterial, a subwavelength unit cell is designed by way of a spiral DGS and a meander stub. From a dispersion diagram, it is expected that the frequency bands for the left-handed (LH) property is 3.5 - 4.4 GHz. At 3.8 GHz in the LH band, backward propagating phenomenon is observed from full-wave analysis. The experimental results show that the proposed TL has a stop-band in 1.75 - 3.6 GHz.

Subwavelength Focusing of Light From a Metallic Slit Surrounded by Grooves with Chirped Period

  • Yoon Jaewoong;Choi Kiyoung;Song Seok Ho;Lee Gwansu
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.162-168
    • /
    • 2005
  • Extraordinary phenomena related to the transmission of light via metallic films with subwavelength holes and grooves are known to be due to resonant excitation and interference of surface waves. These waves make various surface structures to have optically effective responses. Further, a related study subject involves the control of light transmitted from a single hole or slit by surrounding it with diffractive structures. This paper reports on the effects of controlling light with a periodic groove structure with Fresnel-type chirping. In Fresnel-type chirping, diffracted surface waves are coherently converged into a focus, and it is designed considering the conditions of constructive interference and angular spectrum optimization under the assumption that the surface waves are composite diffracted evanescent waves with a well-defined in-plane wavenumber. The focusing ability of the chirped periodic structures is confirmed experimentally by two-beam attenuated total reflection coupling. Critical factors for achieving subwavelength foci and bounds on size of focal spots are discussed in terms of the simulation, which uses the FDTD algorithm.

Modulator of surface plasmon polariton based cycle branch graphene waveguide

  • Zhu, Jun;Xu, Zhengjie;Xu, Wenju;Wei, Duqu
    • Carbon letters
    • /
    • v.25
    • /
    • pp.84-88
    • /
    • 2018
  • At present, an important research area is the search for materials that are compatible with CMOS technology and achieve a satisfactory response rate and modulation efficiency. A strong local field of graphene surface plasmon polariton (SPP) can increase the interaction between light and graphene, reduce device size, and facilitate the integration of materials with CMOS. In this study, we design a new modulator of SPP-based cycle branch graphene waveguide. The structure comprises a primary waveguide of graphene-$LiNbO_3$-graphene, and a secondary cycle branch waveguide is etched on the surface of $LiNbO_3$. Part of the incident light in the primary waveguide enters the secondary waveguide, thus leading to a phase difference with the primary waveguide as reflected at the end of the branch and interaction coupling to enhance output light intensity. Through feature analysis, we discover that the area of the secondary waveguide shows significant localized fields and SPPs. Moreover, the cycle branch graphene waveguide can realize gain compensation, reduce transmission loss, and increase transmission distance. Numerical simulations show that the minimum effective mode field area is about $0.0130{\lambda}^2$, the gain coefficient is about $700cm^{-1}$, and the quality factor can reach 150. The structure can realize the mode field limits of deep subwavelength and achieve a good comprehensive performance.

General Theory for Enhancing the Transmission Efficiency through Small Apertures (소형 개구의 투과효율 향상을 위한 일반 이론)

  • Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1113-1120
    • /
    • 2014
  • In this paper, general methods for enhancing the transmission efficiency through the small subwavelength aperture in an infinite conducting plane are considered first by use of the transmission-resonant aperture like the ridged circular aperture structure, second by employing the transmission-resonant cavity structure. In particular, the maximum transmission cross section is found to be $\frac{2G{\lambda}^2}{4{\pi}}[m^2]$ for the two structures, where G is the gain of the aperture in the output half space. As experimental works, the impedance matching characteristics are investigated for the cases that above two structures are incorporated as a potential near field microscopic probe in the waveguide end. As a complementary problem to the above transmission-resonant aperture problem, some discussions are also given on the scattering resonance by the scattering object much smaller than the wavelength. This discussion may provide a good understanding of the physics for the phenomena that the maximum scattering cross section is much larger than the physical size of the atom in atomic physics area.

Sound Blocking Using Acoustic Metamaterial Scaling (음향메타물질 단위격자 축소를 통한 소리 차단)

  • Park, SungJun;Song, Kyungjun;Kim, Jedo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.371-376
    • /
    • 2015
  • In this study, we use 1:1, 1:2, and 1:4 scale zig-zag shape acoustic metamaterial structure to achieve broad and effective sound blocking at the subwavelength scale. The SPL(Sound Pressure Level) results show that the SPL loss of the scaled metamaterial slab in series is a superposition of individual SPL losses. Also, we show that the metamaterial tailors the material properties to achieve high impedance and high refractive index using effective medium theory. Our results show that broad and effective sound blocking is possible at the subwavelength scale just by scaling acoustic metamaterial.

Reduction of reflection from PET (polyethylene terephthalate) film surface by natural plasma etching

  • Oh, Hoon;Song, Yu-Jin;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1419-1424
    • /
    • 2006
  • We could reduce the reflection from PET(polyethylene terephthalate) film surface by natural plasma etching which does not use etch masks. The plasma etched PET film showed lower reflectance and higher transmittance which is resulted by making subwavelength structure(SWS) on the film surface by the plasma etch rate difference between the amorphous and crystalline region in the surface of PET film.

  • PDF

Fabrication of Gallium Phosphide Tapered Nanostructures on Selective Surfaces

  • Song, Young Min;Park, Hyun Gi
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.284-288
    • /
    • 2014
  • We present tapered nanostructures fabricated on a selective area of gallium phosphide substrates for advanced optoelectronic device applications. A lithography-free fabrication process was accomplished by dry etching of metal nanoparticles. Thermal dewetting of micro-patterned metal thin films provides etch masks for tapered nanostructures. This simple process also allows the formation of plasmonic surfaces with corrugated shapes. Rigorous coupled-wave analysis calculations provide design guidelines for tapered nanostructures on gallium phosphide substrates.

Fabrication of Optically Active Nanostructures for Nanoimprinting

  • Jang, Suk-Jin;Cho, Eun-Byurl;Park, Ji-Yun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.393-393
    • /
    • 2012
  • Optically active nanostructures such as subwavelength moth-eye antireflective structures or surface enhanced Raman spectroscopy (SERS) active structures have been demonstrated to provide the effective suppression of unwanted reflections as in subwavelength structure (SWS) or effective enhancement of selective signals as in SERS. While various nanopatterning techniques such as photolithography, electron-beam lithography, wafer level nanoimprinting lithography, and interference lithography can be employed to fabricate these nanostructures, roll-to-roll (R2R) nanoimprinting is gaining interests due to its low cost, continuous, and scalable process. R2R nanoimprinting requires a master to produce a stamp that can be wrapped around a quartz roller for repeated nanoimprinting process. Among many possibilities, two different types of mask can be employed to fabricate optically active nanostructures. One is self-assembled Au nanoparticles on Si substrate by depositing Au film with sputtering followed by annealing process. The other is monolayer silica particles dissolved in ethanol spread on the wafer by spin-coating method. The process is optimized by considering the density of Au and silica nano particles, depth and shape of the patterns. The depth of the pattern can be controlled with dry etch process using reactive ion etching (RIE) with the mixture of SF6 and CHF3. The resultant nanostructures are characterized for their reflectance using UV-Vis-NIR spectrophotometer (Agilent technology, Cary 5000) and for surface morphology using scanning electron microscope (SEM, JEOL JSM-7100F). Once optimized, these optically active nanostructures can be used to replicate with roll-to-roll process or soft lithography for various applications including displays, solar cells, and biosensors.

  • PDF