• 제목/요약/키워드: substrate selectivity

Search Result 156, Processing Time 0.025 seconds

Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO2 (나노 결정 SnO2와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구)

  • Han, Sang-Do;Hong, Dae-Ung;Han, Chi-Hwan;Chun, Il-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.178-182
    • /
    • 2008
  • Planar type micro catalytic combustible gas sensor was developed by using nano crystalline $SnO_2$ Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases(Co, $C_3H_8,\;CH_4$) at low operating temperature($156^{\circ}C$). The sensor with nano crystalline $SnO_2$ showed higher sensitivity than that without nano crystalline $SnO_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline $SnO_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline $SnO_2$ is a good candidate for detection of hydrogen leaks.

Synthesis and characterization of silicone-containing polyamideimide and its gas separation

  • 이용범;심진기;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.83-84
    • /
    • 1997
  • 1. INTRODUCTION : Polyimides containing siloxane moiety(poly(imide siloxane), or polysiloxaneimide) have been synthesized because of their some merits over polyimide itseft. Polyimides have excellent thermal and mechanical properties but their poor solubility and processibility in their fullly imidized form give disadvantages in applications. Incorporation of siloxane units make it possible to increase solubility and processibility, and also impart impact resistance, low moisture uptake, low dielectric constant, thermo-oxidative resistance, good adhesion properties to substrate and etc.. Incorporation methods of siloxane groups into the polyimide was mainly copolymerization or terpolymerization between oligomeric dimethylsiloxane and aromatic dianhydride. A few methods of introducing siloxane units in functional groups of polyimide was reported. In our laboratory poly(amideimide siloxane) and poly(imide siloxane) were prepared and the study about their thermal kinetics was performed. In separation membrane area, polysiloxaneimides was utilized in pervaporation and gas separation. Polyimides in gas separation show high selectivity and very low permeability, and introduction of siloxane segments increase permeability with low decrease in selectivity. We aimed to introduce silicone segments into poly(amic acid) state and synthesize polymer partially imidized, and also show the gas separation characteristics of the synthesized polymer.

  • PDF

A Scientific Approach for Improving Sensitivity and Selectivity of Miniature, Solid-state, Potentiometric Carbon Monoxide Gas Sensors by Differential Electrode Equilibria Mechanism (전극평형전위차 가스 센싱 메커니즘을 적용한 일산화탄소 소형 전위차센서의 특성 향상에 관한 연구)

  • Park, Jun-Young;Kim, Ji-Hyun;Park, Ka-Young;Wachsman, Eric D.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.92-96
    • /
    • 2010
  • Based on the differential electrode equilibria approach, potentiometric YSZ sensors with semiconducting oxide electrodes for CO detection are developed. To improve the selectivity, sensitivity and response-time of the sensor, our strategy includes (a) selection of an oxide with a semiconducting response to CO, (b) addition of other semiconducting materials, (c) addition of a catalyst (Pd), (d) utilization of combined p- and n-type electrodes in one sensor configuration, and (e) optimization of operating temperatures. Excellent sensing performance is obtained by a novel device structure incorporating $La_2CuO_4$ electrodes on one side and $TiO_2$-based electrodes on opposite substrate faces with Pt contacts. The resulting response produces additive effects for the individual $La_2CuO_4$ and $TiO_2$-based electrodes voltages, thereby realizing an even higher CO sensitivity. The device also is highly selective to CO versus NO with minor sensitivity for NO concentration, compared to a notably large CO sensitivity.

Dry Etching Characteristics of $HfAlO_3$ Thin Films using Inductively Coupled Plasma (고밀도 플라즈마를 이용한 $HfAlO_3$ 박막의 식각 특성 연구)

  • Ha, Tae-Kyung;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.382-382
    • /
    • 2010
  • The etch characteristics of the $HfAlO_3$ thin films and selectivity of $HfAlO_3$ to $SiO_2$ in $Cl_2/BCl_3$/Ar plasma were investigated in this work. The maximum etch rate was 108.7 nm/min and selectivity of $HfAlO_3$ to $SiO_2$ was 1.11 at $Cl_2$(3sccm)/$BCl_3$(4sccm)/Ar(16sccm), RF power of 500 W, DC-bias voltage of - 100 V, process pressure of 1 Pa and substrate temperature of $40^{\circ}C$. As increasing RF power and DC-bias voltage, etch rates of the $HfAlO_3$ thin films increased. Whereas as decreasing of the process pressure, those of the $HfAlO_3$ thin films were increased. The chemical reaction on the surface of the etched the $HfAlO_3$ thin films was investigated with X-ray photoelectron spectroscopy (XPS).

  • PDF

Isolation and Characterization of a Novel Triolein Selective Lipase from Soil Environmental Genes

  • Lim, Hee Kyung;Han, Ye-Jin;Hahm, Moon-Sun;Park, Soo Youl;Hwang, In Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.480-490
    • /
    • 2020
  • A novel lipase gene, Lip-1420, was isolated from a metagenomic library constructed from reed marsh from Mt. Jumbong in Korea, comprising 112,500 members of recombinant plasmids. The DNA sequence of Lip-1420-subclone (5,513 bp) was found to contain at least 11 ORFs according to the GenBank database. The ORF-3 gene was inserted into the pET21a plasmid containing the C-terminal 6-His tag and transformed into E. coli BL21(DE3) to express the recombinant lipase protein. Lip-1420 was purified using a fast protein liquid chromatography system. The gene was registered in GenBank (MH628529). The values of Km and Vmax were determined as 0.268 mM and 1.821 units, respectively, at 40℃ and pH 8.0, using p-nitrophenyl palmitate as the substrate. This lipase belongs to family IV taxonomically because it has conserved HGGG and GDSAG motifs in the constitutive amino acid sequence. According to the predicted structural model, the binding sites are represented by residues H78, G81, D150, S151, A152, V181, and D236. Finally, Lip-1420 showed triolein selectivity for methanolysis between triolein (18:1) and tristearin (18:0) substrates. Further study of the selective mechanism and structure-function relationship of this new lipase could be useful for more practical applications.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

A Study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane (팔라듐 합금 수소 분리막의 전처리에 관한 연구)

  • Park, Dong-Gun;Kim, Hyung-Ju;Kim, Hyo Jin;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.248-256
    • /
    • 2012
  • A Pd-based hydrogen membranes for hydrogen purification and separation need high hydrogen perm-selectivity. The surface roughness of the support is important to coat the pinholes free and thin-film membrane over it. Also, The pinholes drastically decreased the hydrogen perm-selectivity of the Pd-based composite membrane. In order to remove the pinholes, we introduced various surface pre-treatment such as alumina powder packing, nickel electro-plating and micro-polishing pre-treatment. Especially, the micro-polishing pretreatment was very effective in roughness leveling off the surface of the porous nickel support, and it almost completely plugged the pores. Fine Ni particles filled surface pinholes with could form open structure at the interface of Pd alloy coating and Ni support by their diffusion to the membrane and resintering. In this study, a $4{\mu}m$ surface pore-free Pd-Cu-Ni ternary alloy membrane on a porous nickel substrate was successfully prepared by micro-polishing, high temperature sputtering and Cu-reflow process. And $H_2$ permeation and $N_2$ leak tests showed that the Pd-Cu-Ni ternary alloy hydrogen membrane achieved both high permeability of $13.2ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ permation flux and infinite selectivity.

Optimization of Backside Etching with High Uniformity for Large Area Transmission-Type Modulator

  • Lee, Soo-Kyung;Na, Byung-Hoon;Ju, Gun-Wu;Choi, Hee-Ju;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.319-320
    • /
    • 2012
  • Large aperture optical modulator called optical shutter is a key component to realize time-of-flight (TOF) based three dimensional (3D) imaging systems [1-2]. The transmission type electro-absorption modulator (EAM) is a prime candidate for 3D imaging systems due to its advantages such as small size, high modulation performance [3], and ease of forming two dimensional (2D) array over large area [4]. In order to use the EAM for 3D imaging systems, it is crucial to remove GaAs substrate over large area so as to obtain high uniformity modulation performance at 850 nm. In this study, we propose and experimentally demonstrate techniques for backside etching of GaAs substrate over a large area having high uniformity. Various methods such as lapping and polishing, dry etching for anisotropic etching, and wet etching ([20%] C6H8O7 : H2O2 = 5:1) for high selectivity backside etching [5] are employed. A high transmittance of 80% over the large aperture area ($5{\times}5mm^2$) can be obtained with good uniformity through optimized backside etching method. These results reveal that the proposed methods for backside etching can etch the substrate over a large area with high uniformity, and the EAM fabricated by using backside etching method is an excellent candidate as optical shutter for 3D imaging systems.

  • PDF

(Substrate and pretreatment dependence of Cu nucleation by metal-organic chemical vapor deposition) (유기금속화학기상증착법에 의해 증착된 구리 핵의 기판과 전처리의 의존성)

  • Kwak, Sung-Kwan;Lee, Myoung-Jae;Kim, Dong-Sik;Kang, Chang-Soo;Chung, Kwan-Soo
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.1
    • /
    • pp.22-30
    • /
    • 2002
  • The nucleation of copper(Cu) with (hfac)iu(VTMS) oganometallic precursor is investigated for Si, $Sio_2$, TiN, $W_2N$ substrates. As the deposition temperature is increased, the dominant growth mechanism is observed to change from the nucleation of Cu particles to the clustering of Cu nuclei around $180^{\ciec}C$, independent of the employed substrates. It is also observed that the cleaning of substrate surfaces with the diluted HF solution improves the selectivity of Cu nucleation between TiN and $Sio_2$ substrates. Dimethyldichlorosilane treatment is found to passivate the surface of TiN substrate, contrary to the generally accepted belief, when the TiN substrate is cleaned by $H_2O_2$ solution before the treatment.

Temperature effect on Dry Etching of ZrO2 in Cl2/BCl3/Ar Plasma (기판 온도에 따른 Cl2/BCl3/Ar 플라즈마에서 ZrO2 박막의 건식 식각)

  • Yang, Xue;Ha, Tae-Kyung;Wi, Jae-Hyung;Um, Doo-Seung;Kim, Chang-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.256-259
    • /
    • 2009
  • The wafer surface temperature is an important parameter in the etching process which influences the reaction probabilities of incident species, the vapor pressure of etch products, and the re-deposition of reaction products on feature surfaces. In this study, we investigated all of the effects of substrate temperature on the etch rate of $ZrO_2$ thin film and selectivity of $ZrO_2$ thin film over $SiO_2$ thin film in inductively coupled plasma as functions of $Cl_2$ addition in $BCl_3$/Ar plasma, RF power and dc-bias voltage based on the substrate temperature in range of $10^{\circ}C$ to $80^{\circ}C$. The elements on the surface were analyzed by x-ray photoelectron spectroscopy (XPS).